期刊文献+

基于分解和差分进化的多目标粒子群优化算法 被引量:30

Multi-objective particle swarm optimization algorithm based on decomposition and differential evolution
原文传递
导出
摘要 为了提高多目标优化算法解集的分布性和收敛性,提出一种基于分解和差分进化的多目标粒子群优化算法(d MOPSO-DE).该算法通过提出方向角产生一组均匀的方向向量,确保粒子分布的均匀性;引入隐式精英保持策略和差分进化修正机制选择全局最优粒子,避免种群陷入局部最优Pareto前沿;采用粒子重置策略保证群体的多样性.与非支配排序(NSGA-II)算法、多目标粒子群优化(MOPSO)算法、分解多目标粒子群优化(d MOPSO)算法和分解多目标进化-差分进化(MOEA/D-DE)算法进行比较,实验结果表明,所提出算法在求解多目标优化问题时具有良好的收敛性和多样性. In order to improve the convergence and diversity of the Pareto optimal set in multi-objective optimization algorithms, a multi-objective particle swarm optimization algorithm based on decomposition and differential evolution(d MOPSO-DE) is proposed, in which the direction angle is presented to generate a set of direction vectors for maintaining the uniform distribution of the swarm.To avoid getting trapped into a local Pareto optimal front,decomposition-based strategy and differential evolution operator are used to generate the global best leader.Moreover,particle memory re-initialization is applied to enhance the diversity of the swarm.The preliminary results show that,compared with Non-dominated sorting genetic algorithm-II(NSGA-II), multi-objective particle swarm optimizer(MOPSO), multi-objective particle swarm optimizer based on decomposition(d MOPSO) and multi-objective evolutionary algorithm based on decomposition and differential evolution(MOEA/D-DE), the proposed algorithm has good performance on convergence and diversity.
出处 《控制与决策》 EI CSCD 北大核心 2017年第3期403-410,共8页 Control and Decision
基金 国家自然科学基金项目(61374137)
关键词 分解 差分进化算法 多目标优化 粒子群优化算法 方向角 decomposition differential evolution multi-objective optimization particle swarm optimization algorithm direction angles
  • 相关文献

参考文献1

二级参考文献15

  • 1Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithm[R]. Lausanne: Swiss Federal Institute of Technology Computer Engineering and Networks Laboratory, 2001.
  • 2Deb K, Pratap A, Agarwal S, et al. A fast and elitist multi- objective genetic algorithm: NSGA-II[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197.
  • 3Laumanns M, Thiele L, Deb K, et al. Combining convergence and diversity in evolutionary multiobjective optimization[J]. Evolutionary Computation, 2002, 10(3): 263-282.
  • 4Brockhoff D, Zitzler E. Are all objectives necessary? On dimensionality reduction in evolutionary multi-objective optimization[M]. Parallel Problem Solving from Nature- PPSN IX. Berlin: Springer Berlin Heidelberg, 2006: 533- 542.
  • 5Kennedy J. Particle swarm optimization[M]. Encyclopedia of Machine Learning. New York: Springer, 2010: 760-766.
  • 6Zhang Y, Gong D W, Geng N. Multi-objective optimization problems using cooperative evolvement particle swarm optimizer[J]. J of Computational and Theoretical Nanoscience, 2013, 10(3): 655-663.
  • 7Zhang Q, Li H. MOEA/D: A multi-objective evolutionary algorithm based on decomposition[J]. IEEE Trans on Evolutionary Computation, 2007, 11 (6): 712-731.
  • 8Hu P, Li R, Cao L L, et al. Multiple swarms multi-objective particle swarm optimization based on decomposition[J]. Procedia Engineering, 2011, 15: 3371-3375.
  • 9Elloumi W, Baklouti N, Abraham A, et al. The multi- objective hybridization of particle swarm optimization and fuzzy ant colony optimization[J]. J of Intelligent and Fuzzy Systems, 2014, 27(1): 515-525.
  • 10Pang S, Zou H, Yang W, et al. An adaptive mutated multi-objective particle swarm optimization with an entropy-based density assessment scheme[J]. Information & Computational Science, 2013, 4(10): 1065-1074.

共引文献37

同被引文献259

引证文献30

二级引证文献309

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部