期刊文献+

基于用户相似度和特征分化的广告点击率预测研究 被引量:13

Study on Advertising Click-through Rate Prediction Based on User Similarity and Feature Differentiation
下载PDF
导出
摘要 大数据环境下如何对互联网广告进行精准投放一直是计算广告学领域高度关注的问题。作为在线广告投放效果的一个重要指标,点击率的精确预测关系到媒体、用户和广告主三方的利益。目前的主流方法是通过抽取特征建立单一点击率预测模型,其不足之处在于使用单个权重来度量特征对点击率的影响过于片面。该研究基于分而治之的思想,提出了基于用户相似度和特征分化的混成模型。该模型首先根据混合高斯分布来评估用户相似度,将其划分为多个群体。针对不同群体,分别构建子模型并进行有效组合,从而挖掘同一特征对不同群体的差异化影响,进而准确地预测广告点击行为。通过使用真实互联网公司的广告数据集进行实验,并与主流方法做了详细的对比分析,检验了该方法的有效性。 Targeting the Internet advertising accurately is an eye-catching problem in the field of computational advertising.As an important evaluation criteria for online advertising effect,the precision of prediction for click through rate(CTR)benefits publishers,advertisers and users.Without considering feature differentiation,mainstream approaches are extracting features and establishing click prediction model,which use a single weight to measure the effect of a feature for CTR.According to the idea divide and conquer,a hybrid model based on user similarity and feature differentiation was proposed.The model divides users into several groups depending on user similarity evaluated by mixture gaussian distribution.For each group,model was built respectively and they were combined to excavate the different effects of a feature to different groups and improve predict CTR prediction accuracy.Several experiments on advertising data sets of an Internet companies were made and the effectiveness of the approach through detailed comparative analysis was verified with the mainstream approaches.
作者 潘书敏 颜娜 谢瑾奎 PAN Shu-min YAN Na XIE Jin-kui(Department of Computer Scienee and Technology, East China Normal University, Shanghai 200241, China)
出处 《计算机科学》 CSCD 北大核心 2017年第2期283-289,共7页 Computer Science
关键词 计算广告学 点击率预测 用户相似度 特征分化 混成模型 Computational advertising CTR prediction User similarity Feature differentiation Hybrid model
  • 相关文献

参考文献4

二级参考文献152

  • 1CR—Nielsen.CRNielsen发布2010年上半年中国互联网广告市场简报.http://www.cr—nielsen.com/wangluo/trend/201007/291758.html,2010.7.
  • 2eMarketer. Online Ad Spend Surpasses Newspapers. http://affiliate program, amazon, com/gp/advertising/api/ detail/main, html. 2010.12.
  • 3David Ogilvy. Ogilvy on Advertising. Vintage, 1985. 12.
  • 4Phillip Nelson. Advertising as information. The Journal of Political Economy, 1974, 82(4): 729 754.
  • 5新浪.新浪微博用户超过1亿,开始进军电子商务市场.http://tech.sina.com.cn/i/2011-03-02/17395237059.shtml.2011.3.
  • 6新浪.Twitter董事长称全球用户数已突破2亿.http://teeh.sina.com.cn/i/2011—01—12/17495087422.shtml,20l1.1.
  • 7eMrketer. Twitter ad revenues to soar this year. http:// wwwl. emarketer, com /Article. aspx?R= 1008192& AspxAutoDetectCookieSupport= 1, 2011.1.
  • 8Regelson M, Fain D. Predicting click through rate using keyword clusters//Proceedings of the 2nd Workshop on Sponsored Search Auctions. 2006.
  • 9Broder A, Ciccolo P, Gabrilovich E, Josifovski V, Metzler D, Riedel L, Yuan J. Online expansion of rare queries for sponsored search//Proceedings of the SIGIR. 2009.
  • 10Radlinski F, Broder A, Ciccolo P, Gabrilovich E, Josifovski V, Riedel L. Optimizing relevance and revenue in ad search: A query substitution approach//Proceedings of the SIGIR. 2008.

共引文献691

同被引文献46

引证文献13

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部