期刊文献+

亚音速流爬坡问题非平凡解的不存在性

NONEXISTENCE OF A GLOBAL NONTRIVIAL SUBSONIC SOLUTION PAST AN UNBOUNDED 3D RAMP
下载PDF
导出
摘要 本文主要研究三维亚音速流爬坡问题非平凡解的不存在性,在本文中,我们假设流体是等熵定常无旋的,也就是说,可以用定常的位势流方程来描述.通过建立三维角状区域中二阶线性椭圆方程Neumann边值的先验估计,我们证明在这样的区域中不存在全局非平凡的低马赫亚音速流.本文将已有结果中的区域推广到整个完全的三维角状区域. In this paper, we study the nonexistence of a global nontrivial subsonic solution in an unbounded 3D ramp Ω. The flow is assumed to be steady, isentropic and irrotational, namely, the movement of the flow is described by the potential equation. By establishing a prior estimate on the solution of the Laplace equation in Ω with Neumann boundary condition on δΩ, we prove that there is no global nontrivial subsonic flow with low Mach number in such domain. This paper extendes an existing result to a full 3D ramp case.
作者 许刚 高燕 Xu Gang Gao Yan(Faculty of Science, Jiangsu University, Zhenjiang 212013)
机构地区 江苏大学理学院
出处 《南京大学学报(数学半年刊)》 2016年第2期163-176,共14页 Journal of Nanjing University(Mathematical Biquarterly)
基金 国家自然基金(11571141 11501253)资助
关键词 亚音速流 位势流方程 加权赫尔德空间 supersonic flow, potential equation, weighted HSlder space
  • 相关文献

参考文献3

二级参考文献12

  • 1陈恕行.Stability of oblique shock front[J].Science China Mathematics,2002,45(8):1012-1019. 被引量:2
  • 2Hui Cheng YIN.Global Existence of a Shock for the Supersonic Flow Past a Curved Wedge[J].Acta Mathematica Sinica,English Series,2006,22(5):1425-1432. 被引量:4
  • 3Courant, R., Friedrichs, K. O.: Supersonic flow and shock waves, Springer, New York, 1976
  • 4Schaeffer, D. G.: Supersonic flow past a nearly straight wedge. Duke Math. J., 43, 637-670 (1976)
  • 5Li, T.: On a free boundary problem. Chin. Ann. Math., 1, 351-358 (1980)
  • 6Chen, S. X.: Existence of local solution to supersonic flow past a three-dimensional wing. Adv. Appl.Math., 13, 273-304 (1992)
  • 7Chen, S. X., Xin, Z. P., Yin, H. C.: Global shock waves for the supersonic flow past a perturbed cone.Commun. Math. Phys., 228, 47-84 (2002)
  • 8Majda, A.: One perspective on open problems in multidimensional conservation laws, Multidimensional Hyperbolic Problems and Computation, Springer Verlag, IMA, New York, 29, 217-237, 1990
  • 9Morawetz, C. S.: Potential theory for regular and Mach reflection of a shock at a wedge. Comm. Pure Appl. Math., 47, 593-624 (1994)
  • 10Li, T. S.: Global classical solutions for quasilinear hyperbolic systems, Research in Applied Mathematics 34, Wiley, Masson, New York, Paris, 1994

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部