摘要
ZnTi-layered double hydroxides(LDHs) with varying Zn/Ti ratio have been synthesized by coprecipitation of zinc and titanium salts from homogeneous solution.The obtained ZnTi-LDHs possess high crystallinity and hierarchical structure with improved UV-absorbance property.The UV-vis spectra show that the UV absorbing properties of ZnTi-LDHs is stronger and broader than both MgAl-LDH and ZnAl-LDH due to the existence of Ti.Moreover,the UV absorption property increased with the content of Ti,which can be ascribed to the decrease in the band gap energy,as clearly confirmed by density functional theory calculations.When irradiated by UV rays,the property of the samples with generated free radicals(OH^·and O2^·) was evaluated by means of electron spin resonance(EPR).ZnTi-LDHs generated a relatively lower active radicals in contrast with TiO2 and ZnO,which implied an increased safety used as sunscreens.Therefore,this work provides a detailed understanding of UV shielding properties of ZnTiLDHs which was unrevealed previously,and demonstrates the expansive application prospects of ZnTiLDHs in the field of sunscreens.
ZnTi-layered double hydroxides(LDHs) with varying Zn/Ti ratio have been synthesized by coprecipitation of zinc and titanium salts from homogeneous solution.The obtained ZnTi-LDHs possess high crystallinity and hierarchical structure with improved UV-absorbance property.The UV-vis spectra show that the UV absorbing properties of ZnTi-LDHs is stronger and broader than both MgAl-LDH and ZnAl-LDH due to the existence of Ti.Moreover,the UV absorption property increased with the content of Ti,which can be ascribed to the decrease in the band gap energy,as clearly confirmed by density functional theory calculations.When irradiated by UV rays,the property of the samples with generated free radicals(OH^·and O2^·) was evaluated by means of electron spin resonance(EPR).ZnTi-LDHs generated a relatively lower active radicals in contrast with TiO2 and ZnO,which implied an increased safety used as sunscreens.Therefore,this work provides a detailed understanding of UV shielding properties of ZnTiLDHs which was unrevealed previously,and demonstrates the expansive application prospects of ZnTiLDHs in the field of sunscreens.
基金
supported by the National Natural Science Foundation of China (No. 21301012)
the Development of High-Caliber Talents Project of Beijing Municipal Institutions (No. CIT & TCD 201504009)
China Cosmetic Collaborative Innovation Center, BTBU
the Open Research Fund Program of Beijing Key Lab of Plant Resource Research and Development, BTBU