期刊文献+

非正侧阵机载雷达杂波谱迭代自适应配准方法 被引量:8

Registration-based compensation using iterative adaptive approach in non-side-looking airborne radar
下载PDF
导出
摘要 对于机载非正侧阵雷达,杂波谱的距离空变性使得直接利用邻近单元数据估计的协方差矩阵与真实协方差矩阵不匹配,导致空时自适应杂波抑制性能下降。基于配准的补偿(registration-based compensation,RBC)方法通过时域平滑来估计空时谱,继而对地杂波的距离依赖性进行补偿,由于时域孔径损失使杂波谱峰值的估计精度受到限制。针对这一问题,考虑到杂波空时谱的稀疏性,本文利用迭代自适应算法(iterative adaptive approach,IAA)进行空时谱估计,并重构各辅助距离单元协方差矩阵以实现杂波谱配准,称为IAA-RBC算法。由于该算法不存在孔径损失,杂波谱配准精度更高。仿真实验表明,即使在样本中存在目标污染等干扰因素的情况下,所提方法相比传统的利用时域平滑的RBC方法也能获得更好的信噪比改善。 The range-dependent nature of the clutter power spectrum in non-side-looking airborne radar sys terns results in a mismatch of the clutter covariance matrix computed from the secondary data relative to the true one, and poor performance of traditional space-time adaptive processing (STAP) algorithms. Registration-based compensation (RBC) is implemented based on a sub snapshot spectrum using temporal smoothing, the estima- tion accuracy of the clutter spectrum is limited due to temporal aperture loss. In view of this problem, the tech- nique of iterative adaptive approach (IAA) for estimation of the spatial-temporal spectrum is introduced accord- ing to the sparsity, then the covariance matrix for the secondary cell is constructed and brought into registra- tion, namely RBC with IAA (IAA-RBC). In this case, the clutter spectrum is obtained with higher accuracy be- cause that aperture loss is not exist. Numerical examples shows that, in terms of signal to inference plus noise ratio improvement, better performance is obtained with the developed method compared to the traditional RBC method of using temporal smoothing, even in the presence of other interferers, such as targets.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2017年第4期742-747,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(61372133)资助课题
关键词 非正侧阵雷达 空时自适应处理 距离空变性 迭代自适应方法 谱配准 non-side-looking array radar space-time adaptive processing (STAP) range-dependent na- ture iterative adaptive algorithm (IAA) registration-based compensation(RBC)
  • 相关文献

参考文献2

二级参考文献29

  • 1Meng X, Wang T, Wu J, et al. Bistatic clutter analysis and range ambiguity resolving for space time adaptive processing[J]. IET Ra dar, Sonar and Navigation, 2009, 3 (5) :502 - 511.
  • 2Willis N J. Bistatic radar[M]. 2nd ed. Raleigh, NC, USA.. SeiTech Publishing Inc. , 1995.
  • 3Lapierre F D, Ries P, Verly J G. Foundation for mitigating range dependence in radar space time adaptive processing [J]. IET Radar, Sonar and Navigation, 2009, 3 (1) :18 - 29.
  • 4Donoho D L. Compressed sensing[J]. IEEE Trans. on In.for- mation Theory, 2006, 52(4) :1289 - 1306.
  • 5Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency in- formation[J]. IEEE Trans. on Information Theory, 2006, 52 (2) :489 - 509.
  • 6Candes E J, Wakin M B. An introduction to compressive samlp ling[J]. IEEE Signal Processing Magazine, 2008, 25 (2) : 21 -30.
  • 7Selesnick I W, Unnikrishna P S, Li K Y, et al. Angle Doppler processing using sparse regularization[C]//Proc, of the IEEE International Conference on Aeoustic, Speech and Signal Pro- cessing, 2010:2750 - 2753.
  • 8Burintramart S, Sarkar T K, Zhang Y, et al. Performance comparison between statistical based and direct data domain STAPs[J]. Digital Signal Processing, 2007, 17 (4):737 -755.
  • 9Sun K, Zhang H, Li G, et al. A novel STAP algorithm using sparse recovery teehnique[C]//Proc, of the IEEE International Geoscience & Remote Sensing Symposium, 2009: 336 - 339.
  • 10Candes E, Wakin M B. An introduction to compressive sam- pling[J]. IEEE Signal Processing Magazine, 2008, 25 (2): 21 -30.

共引文献12

同被引文献30

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部