期刊文献+

基于Teager能量算子和深度置信网络的滚动轴承故障诊断 被引量:12

Fault damage degrees diagnosis for rolling bearing based on Teager energy operator and deep belief network
下载PDF
导出
摘要 针对传统的分类器对滚动轴承早期微弱故障进行诊断时泛化能力不强的问题,提出基于Teager能量算子(TEO)和深度置信网络(DBN)的滚动轴承故障诊断方法。先用TEO提取滚动轴承振动信号中的瞬时能量,构造相应的特征向量;采用层次优化算法调整DBN结构参数,生成合适的分类器。应用美国西储大学轴承实验振动信号,对不同类型、不同损伤程度的滚动轴承进行故障诊断,对比分析DBN、支持向量机(SVM)和邻近算法(KNN)的分类准确性。研究结果表明:DBN能更准确、稳定地识别滚动轴承各种故障,具有较强的泛化能力。 Considering that the traditional classifiers' generalization ability is not strong in the early fault diagnosis of rolling bearings, the fault diagnosis method based on Teager energy operator (TEO) and deep belief network (DBN) were put forward. Firstly, the instantaneous amplitudes of the vibration signal were calculated by TEO, and the instantaneous energies of the signal were extracted. Then the characteristic vectors were constituted with the instantaneous energies. DBN classifiers were used to identify the faults of rolling bearing. For different types of fault diagnosis, DBN structure parameters were adjusted according to the classification error rate of training sets. Using the bearing fault experiments' data of American West Storage University, the classification accuracy of SVM and KNN was compared. The results show that the suggested methods are more effective and stable for the identification of rolling bearing fault diagnosis in various situations.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第1期61-68,共8页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(51375500) 国家重点基础研究发展计划(973计划)项目(2014CB046300) 湖南省科技计划项目(2016GK2005)~~
关键词 深度置信网络 TEAGER能量算子 滚动轴承 故障诊断 deep belief network Teager energy operator rolling bearings fault diagnosis
  • 相关文献

参考文献9

二级参考文献260

共引文献901

同被引文献111

引证文献12

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部