期刊文献+

一种改进的卡尔曼滤波压缩感知信道估计算法 被引量:2

Improved channel estimation algorithm based on Kalman filtered compressed sensing
下载PDF
导出
摘要 针对卡尔曼滤波压缩感知在信道估计时伪测量过程计算效率较低的问题进行了研究,提出了一种高性能的卡尔曼滤波压缩感知信道估计算法。对伪测量过程的近似l0范数约束框架进行了进一步研究,引入高斯核函数对雅克比赋权矩阵的列向量进行优化,使算法对稀疏信号支撑集的重构速度有较大程度提升;同时,引入微分熵确立了收敛指标,降低了算法的运行时间。仿真表明,在同等条件下,该算法相对于原有算法,估计精度和收敛速度均有较大程度提高,在低信噪比和不同稀疏度下都具有较好的鲁棒性和实用性。 In order to improve the speed and accuracy of pseudo measurement process, this paper proposed an improved signal channel estimation algorithm based on Kalman filtered compressed sensing. Based on the research outcome so far, this paper introduced the Gaussian kernel function to optimize the useful row vectors of support set under the 10 norm constraint, which made the algorithm have a better performance in finding support set. At the same time, this paper defined the evaluation index based on differential entropy to reduce the reconstruction time. The simulation results show that the accuracy and convergence speed of the proposed algorithm are improved greatly compared to the traditional algorithm, good robustness and practicability can be achieved under low signal-to-ratio or sparse degree.
出处 《计算机应用研究》 CSCD 北大核心 2017年第4期1217-1220,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61201209) 陕西省电子信息系统集成重点实验室基金资助项目(2011ZD09)
关键词 压缩感知 稀疏多径信道估计 卡尔曼滤波 伪测量过程 compressed sensing sparse muhipath channel estimation Kalman filter pesudo measurement
  • 相关文献

参考文献4

二级参考文献63

  • 1秦永元,等.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,2007.
  • 2Cand6s E,Romberg J, Tao T.Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory, 2006,52(2) :489-509.
  • 3Donoho D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4) : 1289-1306.
  • 4Cand6s E, Wakin M.An introduction to compressive sam- piing a sensing/sampling paradigm that goes against the common knowledge in data acquisition[J].IEEE Signal Processing Magazine, 2008,25 (2) : 21-30.
  • 5Haupt J, Nowak R, Castro R.Adaptive sensing for sparse signal recovery[C]//Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, Marco Island,FL, 2009: 702-707.
  • 6Averbuch A, Shai D, Shay D.Adaptive compressed image sensing using dictionaries[J].SIAM Journal of Imaging Sci- ences, 2012,5.
  • 7Ji Shihao,Xue Ya,Carin L.Bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2008, 56 (6): 2346-2356.
  • 8Ji S, Dunson D, Carin L.Multitask compressive sensing[J]. IEEE Transactions on Signal Processing,2009,57(1) : 92-106.
  • 9Cormen Thomas H, Leiserson Charles E, Rivest Ron-aidL,CliffordStein.算法导论[M].潘金贵译.北京:机械工业出版社,2008.
  • 10Arulampalam M S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on,Signal Processing,2002,50(2):174-188.

共引文献10

同被引文献6

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部