期刊文献+

交叉扩散的带Michaelis-Menton型非线性收获率的捕食-食饵模型 被引量:1

Prey-Predator Model with Cross-Diffusion and Michaselis-Menten Type Prey Harvesting
下载PDF
导出
摘要 在Dirichlet边界条件下,寻求一类交叉扩散的带Michaelis-Menton型非线性收获率捕食-食饵模型正解的存在性.利用上下解法和Crandall-Rabinowitz分歧理论,得出正解的先验估计和一类半平凡解附近局部分歧解的存在性,并将局部分歧解延拓为全局分歧解.推导结果表明:在一定条件下,该捕食模型的正解是有界的,且捕食者和食饵可共存. The paper discusses the existence of positive solutions to a kind of predator-prey model with cross-diffusion and Miehaselis-Menten typed prey harvesting under homogeneous Dirichlet boundary conditions. By Crandall-Rabinowitz bifurcation theory, the existence of positive solutions to a local bifurcation is proved and the local bifurcation is developed to the global one, thus obtaining sufficient conditions of positive solutions, which shows that the predator and the prey coexist under certain conditions.
作者 董苗娜 容跃堂 王晓丽 殷珍杰 DONG Miaona RONG Yuetang WANG Xiaoli YIN Zhenjie(School of Science, Xi' an Polytechnic University, Xi' an 710048, China)
出处 《西安工业大学学报》 CAS 2016年第11期883-890,共8页 Journal of Xi’an Technological University
基金 陕西省自然科学基础研究计划项目(2015JM1034)
关键词 捕食-食饵 交叉扩散 正解 全局分歧 predator-prey model cross-diffusion positive solutions global bifurcation
  • 相关文献

参考文献4

二级参考文献44

  • 1戴婉仪,付一平.一类交叉扩散系统定态解的分歧与稳定性[J].华南理工大学学报(自然科学版),2005,33(2):99-102. 被引量:7
  • 2李海侠,李艳玲.一类捕食模型正平衡解的整体分歧[J].西北师范大学学报(自然科学版),2006,42(2):8-12. 被引量:5
  • 3Ye Q X,Li Z Y.Intoduction to Reaction-Diffusion Equations.Beijing:Scientific Press,1990.
  • 4Blat J,Brown K J.Global bifurcation of positive solutions in some systems of elliptic equtions.SIAM J.Math.Anal.,1986,17(6):1339-1353.
  • 5Kato T.Perturbation Theory of Linear Operators.New York:Springer-Verlag,1980.
  • 6Smoller J.Shock Waves and Reaction-Diffusion Equations.Springer-Verlag,New York,1982.
  • 7Crandall M G,Pabinowitz P H.Bifurcation,perturbation of simple eignvalues and linearized stability.Archive for Rational Mechanics Analysis,1973,52:161-180.
  • 8Crandall M G,Rabinowitz P H.Bifurcation from simple eigenvalues.J.Funct.Anal.,1971,8:321-340.
  • 9Rabinowitz P H.Some global results for nonlineat eigenvalue problems.J.Funct.Anal.,1971,7:487-513.
  • 10Bazykin A D.Nonlineat Dynamics of Interacting Populations.World Scientific,Singapore,1998.

共引文献9

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部