期刊文献+

基于相对位置的2阶段低级动作分割方法 被引量:4

A two-phase low-level motion data segmentation method based on relative position
下载PDF
导出
摘要 为了解决由于运动捕捉数据的高维性导致传统低级算法不能很好分割动作的问题,提出了一种基于相对位置的2阶段低级分割方法.该方法使用末端关节相对于根关节(臀)的三维位置信息作为特征,首先采用巴特沃斯滤波器对选取的特征进行降噪,之后结合过零点检测和阈值方法找出各维分割点,并将属于同一个末端关节的三维数据上的分割点进行综合,从而获取各个末端关节的分割点,最后从各个末端关节的分割点融合出全身分割点.从卡耐基梅隆大学运动捕捉数据库中选取不同种类动作共12 941帧用以评价所提出的方法.结果表明,该方法能够有效地对动作捕捉数据进行分割,同基于速率的2种方法相比,所提出方法可以获得更高的查全率与准确率. To solve the problem that traditional low-level segmentation methods can hardly achieve suitable segmentation for motion data due to high dimensionality,a two-phase low-level motion data segmentation method was proposed based on relative position. The positions of end joints relative to root joint were utilized as the features and were later processed to remove noise by Butterworth filter.According to zero-crossing and thresholding methods,the segment points for each dimension were located in three dimensions of end joint and synthesized to get segment points for end joint. Those segment points of all end joints were merged to derive the segment points for whole body. The 12 941 frames of motions from CMU Mocap database were explored to evaluate the proposed method. The results show that the proposed method is effective for segmenting motion capture data. Compared with the 2 velocity-based segmentation methods,the proposed method can lead to better recall and precision ratio.
作者 杨洋 詹永照 王新宇 YANG Yang ZHAN Yongzhao WANG Xinyu(School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China)
出处 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第2期186-191,共6页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(61402205) 中国博士后基金资助项目(2015M571688) 江苏大学高级人才启动经费资助项目(13JDG085)
关键词 动作分割 运动捕捉 高维性 过零点检测 相对位置 segmentation motion capture high dimensionality zero-crossing detection relative position
  • 相关文献

参考文献4

二级参考文献35

  • 1王方石,须德,吴伟鑫.基于自适应阈值的自动提取关键帧的聚类算法[J].计算机研究与发展,2005,42(10):1752-1757. 被引量:32
  • 2Geetha P,Narayanan V.A survey of content-based vi-deo retrieval[J].Journal of Computer Science,2008,4(6):474-486.
  • 3Truong B T,Venkatesh S.Video abstraction:a syste-matic review and classification[J].ACM Transactionson Multimedia Computing,Communications and Applica-tions,2007,doi:10.1145/1198302.1198305.
  • 4Ciocca G,Schettini R.An innovative algorithm for keyframe extraction in video summarization[J].Journal ofReal-Time Image Processing,2006,1(1):69-88.
  • 5Zhuang Y T,Rui Y,Huang T S,et al.Adaptive key-frame extraction using unsupervised clustering[C]∥Proceedings of the 1998 IEEE International Conferenceon Image Processing.Los Alamitos:IEEE Comp Soc,1998:866-870.
  • 6Man Hua,Peng Jiang.A feature weighed clusteringbased key-frames extraction method[C]∥Proceedings ofthe 2009 International Forum on Information Technologyand Applications.Piscataway:IEEE Computer Society,2009:69-72.
  • 7Liu Dianting,Shu Meiling,Chen Chao,et al.Integra-tion of global and local information in videos for keyframe extraction[C]∥Proceedings of 2010 IEEE Inter-national Conference on Information Reuse and Integra-tion.Piscataway:IEEE Computer Society,2010:171-176.
  • 8Tian Xiang,Yang Haidong,Deng Feiqi.A novel artifi-cial immune network algorithm[C]∥Proceedings of the2006 International Conference on Machine Learning andCybernetics.Piscataway:IEEE Computer Society,2006:2159-2165.
  • 9Li Xianhui,Zhan Yongzhao,Ke Jia,et al.Shot retrie-val based on fuzzy evolutionary ainet and hybrid features[J].Computers in Human Behavior,2011,27(5):1571-1578.
  • 10Graaff A J,Engelbrecht A P.A local network neighbor-hood artificial immune system for data clustering[C]∥Proceedings of the 2007 IEEE Congress on EvolutionaryComputation.Piscataway:IEEE,2007:260-267.

共引文献12

同被引文献29

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部