期刊文献+

高强2024铝合金的固溶时效行为研究 被引量:6

Solid Solution and Aging Behavior of High Strength 2024 Aluminum Alloy
原文传递
导出
摘要 对2024合金薄板进行了固溶和时效热处理,研究了时效时间对合金硬度、电导率、力学性能、组织和断口形貌的影响。结果表明,经过固溶和时效处理后,2024合金组织主要由α-Al、Al_7Cu_2Fe和Al_2CuMg相组成。随着时效时间增加,显微硬度先增大后降低,在24h时显微硬度最大。电导率随时效时间延长而提高,时效12~24 h时,电导率增加速度较快,超过24 h后的增加速度变缓。经过490℃×1h固溶+175℃×24 h时效处理后,2024合金可以取得最佳的强度和塑性结合。 The 2024 alloy sheet was heat-treated by solid solution and aging, the effect of aging time on the hardness, electric conductivity, mechanical properties, metallographic and fractographic morphology of 2024 alloy was studied. The results show that the main phase in 2024 alloy after solid solution and aging treatment are of α-Al, A17Cu2Fe and Al2CuMg phase. The microhardness of the alloy increases and then decreases with the increase of aging time, and the microhardness is greatest at the aging time of 24 h. The electrical conductivity increases with the increase of aging time, the electrical conductivity increases faster at the aging time of 12 h-24 h, and when the aging time exceeds 24 h, the electrical conductivity increases slowly. The best strength and plasticity combination of 2024 alloy can be achieved with 490℃×1h solid solution and 175℃×24 h aging treatment. Key words:
作者 彭焕伟 孙亚军 PENG Huanwei SUN Yajun(College of Mechanical and Electrical Engineering, Jilin Province Economic Management Cadre College, Changchtm, 130012, China FAW Engine Branch Company, Changchun, 130000, China)
出处 《铸造技术》 CAS 北大核心 2017年第3期581-584,共4页 Foundry Technology
基金 基金项目:专业技能型人才培养模式研究与实践(2014 年吉林省教学成果奖)
关键词 2024铝合金 固溶 时效 力学性能 电导率 2024 alloy solid solution aging mechanical properties conductivity
  • 相关文献

参考文献3

二级参考文献20

  • 1袁志山,陆政,谢优华,戴圣龙,刘常升.高强Al-Cu-Li-X铝锂合金2A97三级时效工艺及性能研究[J].航空材料学报,2006,26(3):79-82. 被引量:13
  • 2颜建辉,陈辉煌.热处理工艺对6063铝合金强度和导电率的影响[J].热加工工艺,2004,33(2):49-50. 被引量:15
  • 3[美]蒙多尔福.铝合金的组织与性能[M].北京:冶金工业出版社,1988,432-441.
  • 4X.Chen,Z.Liu,S.Bai,Y.Li,L.Lin.Alloying behavior oferbium in an Al-Cu-Mg alloy,[J].Joumal of Alloys and Com-pounds,(2008),doi:10.1016/j.jallcom.2010,06,029.
  • 5Richard A.Kamesky,David C.Dunand,David N.Seidman.Evolution of nanoscale precipitates in Al microalloyed with Scand Er[J].Acta Materialia,57(2009)4022-4031.
  • 6R.K.W.Marceau,G.Sha,R.N.Lumley,S.P.Ringer.Evo-lution of solute clustering in Al-Cu-Mg alloys during sec-ondary ageing[J].Acta Materialia,58(2010)1795-1805.
  • 7李念奎,聂波,刘静安,等.铝合金材料及其热处理技术[M].北京:冶金工业出版社,2012:228-236.
  • 8Darmiani E,Danaee l,Golozar M A,et al. Corrosion investiga- tion of AI-SiC nano-composite fabricated by accumulative roll bonding (ARB) process[J]. Journal of Alloys and Compounds, 2013,552:31-39.
  • 9Hidalgo P,Cepeda-Jimenez C M,Ruano O A,et al. Influence of rolling direction on strength and ductility of aluminum and aluminum al-loys produced by accumulative roll bonding [J]. Metallurgical and Materials Transactions,2010,41:758-767.
  • 10Damon Kenta,Gui Wanga,Zhentao Yub,et al. Strength en- hancement of a biomedical titanium alloy through a modified accumulative roll bonding technique [J]. Journal of the Me- chanical Behavior of Biomedical Materials, 2011,4: 405-416.

共引文献10

同被引文献44

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部