期刊文献+

基于EEMD技术在电力信息安全中的多步时间序列预测方法 被引量:4

Multi-step time series prediction method based on EEMD technology in electric power information security
下载PDF
导出
摘要 针对用户访问轨迹的数据特征,提出一种基于EEMD技术的多步时间序列预测模型。该模型利用了集合经验模态分解EEMD结合极限学习机ELM模型,混合人工鱼群MAFA优化的方式,克服了算法中存在过拟合和多步时间序列预测的策略限制问题。通过该模型,实现了对访问轨迹时间序列多步预测,结合安全范围包络线,进而提前发现是否存在入侵行为。验证结果表明,优化后的EEMD-ELM模型比传统时间序列预测方法的迭代速率与精度得到了极大提高,泛化能力增强,说明了该方法的有效性、可行性。 According to the data characteristics of the user access path, a multi-step time series prediction model based on ensemble empirical mode decomposition (EEMD) technology is proposed. The model uses the EEMD combining with the ex- treme learning machine (ELM) model, and optimization method of the hybrid artificial fish swarm algorithm to overcome the con- straint problems of the over-fitting and multi-step time series prediction strategy existing in the algorithm. The time series multi- step prediction of the access path was implemented with the model, and the intrusion behavior can be found in advance in com- bination with the envelope line of the safety range. The verification results show that the optimized EEMD-ELM model has higher iteration rate and accuracy than those of the traditional time series prediction methods, its generalization ability is enhanced, and the effectiveness and feasibility of this method was illustrated.
出处 《现代电子技术》 北大核心 2017年第7期159-162,166,共5页 Modern Electronics Technique
关键词 势态感知 集合经验模态 极限学习机 混合人工鱼群 多步时间序列预测 situation awareness ensemble empirical mode extreme learning machine hybrid artificial fish swarm multi-step time series prediction
  • 相关文献

参考文献2

二级参考文献18

  • 1廖晓昕,罗琦.Lorenz混沌系统Lyapunov稳定性简洁的代数充要条件及其应用[J].中国科学:信息科学,2010,40(8):1086-1095. 被引量:6
  • 2Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: A new learning scheme of feedforward neu- ral networks [ C]//Neural Networks, Proceedings of 2004 IEEE International Joint Conference on. Buda- pest : IEEE, 2004 : 985-990.
  • 3Huang G B, Zhou H, Ding X, etal. Extreme learn- ing machine for regression and multiclass classifica- tion[J]. Systems, Man, and Cybernetics, Part B: Cy- bernetics, IEEE Transactions on, 2012, 42 (2): 513- 529.
  • 4Huang G B, Wang D H, Lan Y. Extreme learning machines: a survey[J]. International Journal of Ma- chine Learning and Cybernetics, 2011,2 (2) : 107-122.
  • 5Huang G B, Zhu Q Y, Slew C K. Extreme learning machine: theory and applications[J]. Neurocomput- ing,2006,70(1) :489-501.
  • 6Huang G B. An insight into extreme learning ma- :hines: Random neurons, random features and ker- nels[J]. Cognitive Computation, 2014,6 (3) : 376-390.
  • 7Huang G B, Song S J, Jatinder N D G, et al. Semi- supervised and unsupervised extreme learning ma- chines[J]. IEEE Transactions on Cybernetics, accept- ed paper,2014,44(12) :2405-2417.
  • 8Chapelle O, Schokopf B, Zien A. Semi-supervised learning[M]. London: The MIT Press, 2006.
  • 9Zhu X J. Semi-supervised learning literature survey [R]. 1530, Madison: University of Wisconsin - Mad- ison, 2008.
  • 10Andrew B G, Li M, ghu X J. Online manifold regu- larization: A new learning setting and empirical study [C]//Machine Learning and Knowledge Discovery in Databases Lecture Notes in Computer Science. Ant- werp : Springer Berlin Heidelberg, 2008 : 393-407.

共引文献19

同被引文献38

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部