摘要
基于Lemaitre损伤理论和连续化法建立了正三角形网格的三向单层扁柱面网壳的非线性动力学方程和协调方程.在两对边简支条件下用分离变量函数法给出考虑损伤扁柱面网壳的横向位移.通过Galerkin作用得到系统的非线性振动微分方程,给出方程准确解.利用Melnikov函数得到损伤扁柱面网壳发生混沌运动的临界条件,通过实例计算,分析证明了材料的损伤降低了系统发生混沌运动的门槛.
Based on Lema itre’ s damage theory and in consideration of the damage of bars of the shallow cylindrical reticulated shells, nonlinear dynamical equations of the system were obtained by the quasi-shell method. The lateral displacement of the shells under the condition of two edges simple support was solved by the separating variable method. Furthermore an accurate free vibration solution of nonlinear vibration differential equation was obtained by Galerkin method. The theoretical critical condition of chaos was presented by Melnikov Function and existence of the its chaos motion was approved by digital simulation method. It is found that the initial damage bars make its chaos threshold decrease.
出处
《西安建筑科技大学学报(自然科学版)》
CSCD
北大核心
2017年第1期76-80,共5页
Journal of Xi'an University of Architecture & Technology(Natural Science Edition)
基金
国家自然科学基金河南省联合基金资助项目(U1404524)
河南省科技厅基础与技术前沿研究基金资助项目(142300410040)
关键词
柱面网壳
初始损伤
非线性动力学特性
shallow cylindrical reticulated shells
initial damage
nonlinear dynamic characteristic