期刊文献+

基于ARIMA与数据累加生成的区间时间序列混合预测模型 被引量:2

Interval time series hybrid prediction model based on ARIMA and data accumulation
下载PDF
导出
摘要 为了提高区间时间序列的模型预测精度,提出一种改进ARIMA模型的方法。将二元与三元区间序列分别转换为含有等量信息的实数序列,结合灰色模型中的数据累加处理方法和ARIMA模型实现实数序列建模,还原处理得到区间预测序列。数据分析表明,当区间序列波动较小时,不进行数据累加处理就能得到较高精度的区间预测序列,而当区间序列波动较大时,数据累加处理方法消除了原数据的随机性,更好地挖掘了建模序列的规律,因而得到更高精度的预测序列。 In order to improve the accuracy of the interval time series in forecasting model,an improved ARIMA model is proposed.The binary and ternary interval time series are changed into real sequences which contain the equivalent information,and then the cumulative processing method of the gray model is combined with ARIMA model to realize real sequence prediction.Finally the interval prediction can be obtained through the restoring procedure.The data analysis shows that the interval prediction sequence with high precision can be got without the data accumulated processing when the fluctuation of the interval sequence is small.But when the fluctuation of the interval sequence is large,the processing method of data accumulation eliminates the randomness of the original series and can be better to learn about the regular pattern of modeling sequence,so that the prediction sequence with higher precision can be got.
出处 《桂林电子科技大学学报》 2017年第1期79-86,共8页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(71561008) 广西自然科学基金(2014GXNSFAA118010) 广西教育厅科研项目(KY2015YB113)
关键词 ARIMA模型 灰色模型 区间序列预测 区间中值 区间半径 ARIMA model gray model interval time series prediction interval median interval radius
  • 相关文献

参考文献5

二级参考文献45

  • 1陈章潮,熊岗.应用灰色系统原理进行长期电力需求预测[J].系统工程,1994,12(2):67-71. 被引量:13
  • 2朱宝璋.关于灰色系统基本方法的研究和评论[J].系统工程理论与实践,1994,14(4):52-60. 被引量:80
  • 3陈俊珍.关于灰色系统理论中的累加生成[J].系统工程理论与实践,1989,9(5):10-15. 被引量:39
  • 4邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1992..
  • 5李福琴.灰色模型的稳定性和建模精度研究[D].武汉:武汉理工大学理学院,2005.
  • 6Fuller W. A., Introduction to Statistical Time Series(2nd ed) [M], New York..John Wiley & Sons, 1996 : 1- 5.
  • 7Klein J. L. ,Statistical Visions in Time; A History of Time Series Analysis, 1662 -- 1938 [ M]. Cambridge: Cambridge University Press, 1997 : 54-- 102.
  • 8Kirchgaissner G. , Wolters J. , Introduction to Modern Time Series Analysis[M]. New York: Springer- Verlag, 2007 : 1 -- 10.
  • 9Schuster A., On the Periodicities of Sunspots[J]. Philosophical Transactions of the Royal Society of London. Series A, 1906,206: 69--100.
  • 10Yule G. U. , On a Method of Investigating Periodicities in Dis- turbed Series,with Special Reference to Wolfet's Sunspot Numbers [J]. Philosophical Transactions of the Royal Society of London. Series A,1927,226:267--298.

共引文献85

同被引文献10

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部