期刊文献+

一种改正LS+AR模型提高短期极移预报精度的方法 被引量:7

A Modified LS+AR Model to Improve the Accuracy of the Short-term Polar Motion Prediction
下载PDF
导出
摘要 最小二乘(Least Squares,LS)与自回归(Auto Regressive,AR)联合(LS+AR)模型在极移预报(polar motion,PM)中存在以下问题:最小二乘拟合的内部残差值较好而LS外推的残差值较大;LS拟合残差序列是非线性的,故根据预报历元前的残差序列建立的AR模型可能并不适用于待预报的残差序列,存在不匹配预报的情况.针对这两个问题,通过以下方法进行解决:首先对LS拟合数据两端点附加约束条件使其固定到LS拟合曲线上,因此在两端点附近的拟合值与观测值十分接近;然后选取与LS外推残差序列变化趋势接近的内推残差序列作为AR模型的建模对象,进行残差预报.通过实例表明该方法能够有效地提高LS+AR模型在短期极移预报的精度.此外,通过与RLS(Robustified Least Squares)+AR、RLS+ARIMA(Auto Regressive Integrated Moving Average)和LS+ANN(Artificial Neural Network)模型的预报结果对比,证明了该方法在极移预报中的可行性.实例证明了所提出的方法在短期预报中可以取得良好的预报结果,尤其在1–10d超短期的极移预报上可以获得与国际最好预报精度相当的预报结果. There are two problems of the LS (Least Squares)+AR (AutoRegressive) model in polar motion forecast: the inner residual value of LS fitting is reasonable, but the residual value of LS extrapolation is poor; and the LS fitting residual sequence is non-linear. It is unsuitable to establish an AR model for the residual sequence to be forecasted, based on the residual sequence before forecast epoch. In this paper, we make solution to those two problems with two steps. First, restrictions are added to the two endpoints of LS fitting data to fix them on the LS fitting curve. Therefore, the fitting values next to the two endpoints are very close to the observation values. Secondly,we select the interpolation residual sequence of an inward LS fitting curve, which has a similar variation trend as the LS extrapolation residual sequence, as the modeling object of AR for the residual forecast. Calculation examples show that this solution can effectively improve the short-term polar motion prediction accuracy by the LS+AR model. In addition, the comparison results of the forecast models of RLS (Robustified Least Squares)+AR, RLS+ARIMA (AutoRegressive Integrated Moving Average), and LS+ANN (Artificial Neural Network) confirm the feasibility and effectiveness of the solution for the polar motion forecast. The results, especially for the polar motion forecast in the 1-10 days, show that the forecast accuracy of the proposed model can reach the world level.
出处 《天文学报》 CSCD 北大核心 2017年第2期65-75,共11页 Acta Astronomica Sinica
基金 国家自然科学基金项目(41404033) 国家科技基础性工作专项(015FY310200) 国家重点实验室开放基金重点项目(SKLGIE2014-Z-1-1) 中央高校基本科研业务费项目(2015QNA31)资助
关键词 天体测量学 地球自转 天体测量学 极移 地球 动力学 方法 数据分析 astrometry: earth rotation, astrometry: polar motion, earth: dynamics,methods: data analysis
  • 相关文献

参考文献5

二级参考文献29

  • 1许雪晴,周永宏.地球定向参数高精度预报方法研究[J].飞行器测控学报,2010,29(2):70-76. 被引量:34
  • 2王琪洁,廖德春,周永宏.地球自转速率变化的实时快速预报[J].科学通报,2007,52(15):1728-1731. 被引量:15
  • 3杨叔子 吴雅.时间序列分析[M].武汉:华中理工大学出版社,1994..
  • 4Tomasz Niedzielski,Wies?aw Kosek.Prediction of UT1–UTC, LOD and AAM χ3 by combination of least-squares and multivariate stochastic methods[J]. Journal of Geodesy . 2008 (2)
  • 5H. Schuh,M. Ulrich,D. Egger,J. Müller,W. Schwegmann.Prediction of Earth orientation parameters by artificial neural networks[J]. Journal of Geodesy . 2002 (5)
  • 6Eubanks.Variations in the orientation of the earth. . 1993
  • 7Tomasz Niedzielski,Wieslaw Kosek.Prediction of UT1-UTC,LODand AAMby combination of least-squares and multivari-ate stochastic methods. Journal of Geodesy . 2008
  • 8Dennis D McCarthy,Gerard Petit. IERS Con-ventions(2003) . 2003
  • 9Wolfgang R,,Richter B. IERS Annual Re-port1029-0060-2006 . 2006
  • 10Zhou YH,Salstein DA,Chen JL.Revised atmospheric excitation function series related to Earth‘s variable rotation under consideration of surface topography. Chinese Journal of Geophysics . 2006

共引文献77

同被引文献49

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部