期刊文献+

数论函数方程φ_2(n)=S(n^(10))的解 被引量:13

Solution of Arithmetic Function Equation φ_2( n) = S( n^(10))
下载PDF
导出
摘要 利用数论函数φ(n),φ_2(n),S(n)的基本性质并结合了初等数论方法研究了方程φ_2(n)=S(n^(10))的可解性,证明并给出该方程仅有正整数解n=320,441,882,1681,3362。 In this paper,the solvability of equation φ2( n) = S( n(10)) was studied with the property of φ( n),φ2( n),S( n) and elementary number theory methods,at the same time,all their positive integer solutions n = 320,441,882,1681,3362 of the equation were proved and given.
出处 《延安大学学报(自然科学版)》 2017年第1期9-12,共4页 Journal of Yan'an University:Natural Science Edition
关键词 EULER函数 广义Euler函数 SMARANDACHE函数 正整数解 Euler function generalized Euler function Smarandache function positive integer solution
  • 相关文献

参考文献6

二级参考文献29

  • 1YIY. An equation involving the Euler function and Smarandache function [J]. Scientia Magna, 2005, 1 (2): 173-175.
  • 2FARRISM, MITCHELL P. Bounding the Smarandache function[J]. Smarandache Notions J, 2002, 13: 37-42.
  • 3华罗庚.数论导引[M].北京:科学出版社,1979..
  • 4DICKSON L E. History of the Theory of Numbers, Vol 1 [ M]. Washington: Carnegie Institution, 1919.
  • 5MA J P. An equation involving the Smarandache function [J]. Scientia Magna, 2005,1 (2) :89 -90.
  • 6YI Y. An equation involving the Euler function and Smarandache function [ J ]. Scientia Magna, 2005,1 (2) : 173 - 175.
  • 7FARRIS M, MITCHELL P. Bounding the Smarandache function [ J]. Smarandache Notions J, 2002, 13:37 - 42.
  • 8黄寿生,陈锡庚.关于数论函数方程φ(n)=S(n^5)[J].华南师范大学学报(自然科学版),2007,39(4):41-43. 被引量:24
  • 9I FARRISM,MITCHELLP. Bounding the Smarandache func- tion[J].Smarandache Notions Journal,2002.37-42.
  • 10张文鹏.初等数论[M]西安:陕西师范大学出版社,200731-32.

共引文献51

同被引文献79

引证文献13

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部