期刊文献+

带有多个时变时滞的一阶多智能体系统的H_∞包围控制

H_∞ containment control for first-order multi-agent systems with multiple time-varying delays
原文传递
导出
摘要 研究带有多个时变时滞的一阶多智能体系统在有向网络拓扑下的H_∞包围控制问题.首先,通过引入收敛性向量函数,将所讨论问题转化为一般时滞系统的H_∞控制问题.然后,通过构造适当的Lyapunov-Krasovskii泛函,利用Lyapunov稳定性理论得到多智能体系统实现包围控制的充分条件,同时求得时变通信时滞的最大容许值.另外,在有外部干扰的情况下,得到了多智能体系统具有H_∞包围控制性能常数的充分条件.最后,通过数值仿真实验验证了所得结果的有效性. The H∞ containment control problems for first-order multi-agent systems with multiple time-varying delays under directed network topology are investigated.Firstly,by introducing a convergence vector function,the H∞containment control problems of multi-agent systems are transformed into the H∞ control problems of normal time-delay systems.Then,by using the Lyapunov stability theory,a suitable Lyapunov-Krasovskii functional is designed.Some sufficient conditions for H∞ containment control are established and the upper bound of the time-varying delays are obtained.Furthermore,the existence criterion of H∞ containment control performance constant is also gained when there is external disturbance in the multi-agent systems.Finally,simulations results show the effectiveness of the conclusions.
出处 《控制与决策》 EI CSCD 北大核心 2017年第4期584-592,共9页 Control and Decision
基金 国家自然科学基金项目(61174209) 中央高校基本科研业务费专项资金项目(FRF-TP-15-041A1)
关键词 多智能体系统 时变时滞 包围控制 H∞控制 有向网络拓扑 multi-agent system time-varying delays containment control H∞control directed network topology
  • 相关文献

参考文献2

二级参考文献15

  • 1Olfati-Saber R. Flocking for multi-agent dynamic systems: Algorithms and theory[J]. IEEE Trans on Automatic Control, 2006, 51(3): 401-420.
  • 2Dimarogonas D V, Johansson K H. Stability analysis for multi-agent systems using the incidence martrix: Quantized communication and formation control[J]. Automatica, 2010, 46(4): 695-700.
  • 3Ceragioli F, De Persis C, Frasca P. Discontinuities and hysteresis in quantized average consensus[J]. Automatica, 2011, 47(9): 1916-1928.
  • 4Liu H, Cao M, De Persis C. Quantization effects on synchronized motion of teams of mobile agents with second-order dynamics[J]. Systems & Control Letters, 2012, 61(12): 1157-1167.
  • 5Chen W, Li X, Jiao L C. Quantized consensus of second-order continuous-time multi-agent systems with a directed topology via sampled data[J]. Automatica, 2013, 49(7): 2236-2242.
  • 6Guan Z H, Meng C, Liao R Q, et al. Consensus of second-order multi-agent dynamic systems with quantized data[J]. Physics Letters A, 2012, 376(4): 387-393.
  • 7Filippov A F. Differential equations with discontinuous righthand side[J]. American Mathematical Society Tranlations, 1964, 42(2): 199-231.
  • 8Cortes J. Discontinuous dynamical systems[J]. IEEE Control Systems Magazine, 2008, 28(3): 36-73.
  • 9Clarke F H. Optimization and nonsmooth analysis[M]. New York: Wiely, 1983: 45-46.
  • 10Shevitz D, Paden B. Lyapunov stability theory of nonsmooth systems[J]. IEEE Trans on Automatic Control, 1994, 39(9): 1910-1914.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部