期刊文献+

基于视觉语义主题与反馈日志的图像自动标注 被引量:1

Image automatic annotation based on the visual semantic topics and feedback log
原文传递
导出
摘要 为了提高图像标注性能,提出了一种基于视觉语义主题与反馈日志的图像自动标注方法。首先,提取图像前景与背景区域,分别进行处理;其次,基于WordNet构建标注词之间的语义关系模型,并结合概率潜在语义分析(PLSA)与高斯混合模型(GMM)建立图像底层特征、视觉语义主题与标注关键词间的联系,实现对图像的自动标注;然后,基于增量关联规则建立标注日志数据库,并在对数据库消噪的基础上,通过反馈技术提高标注的效果;最后,采用Corel5数据库进行验证,实验结果证明了本文方法的有效性。 A novel automatic annotation scheme based on the visual semantic topics and feedback logs is proposed in the paper. Firstly, the foreground and background regions of the image are extracted and pro- cessed respectively. Then, the relations among the low-level features, the visual semantic topics and the key words are built based on the probabilistic latent semantic analysis (PLSA) and the Gaussian mixture model (GMM). After that, the model of the semantic relations among the key words is constructed based on the WordNet to improve the annotation performance. Based on the incremental association rule, the relevance feedback technology is further introduced in the proposed annotation model by constructing the feedback logs database. The widely used database of Corel5 is used as the test bed,and the experimental results show that the new scheme gives better performance than the traditional methods.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2017年第4期441-450,共10页 Journal of Optoelectronics·Laser
基金 河南省基础与前沿技术研究(132300410462 112300410281)资助项目
关键词 图像标注 概率潜在语义分析(PLSA) 高斯混合模型(GMM) 反馈日志 增量关联规则 image automatic annotation probabilistic latent semantic analysis (PLSA) Gaussian mixture model (GMM) feedback logs incremental association rule
  • 相关文献

参考文献8

二级参考文献165

  • 1吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾[J].计算机学报,2005,28(12):1969-1979. 被引量:52
  • 2施智平,李清勇,史俊,史忠植.集成视觉特征和语义信息的相关反馈方法[J].计算机辅助设计与图形学学报,2007,19(9):1138-1142. 被引量:4
  • 3Vasconcelos N. Minimum probability of error image retrieval[J]. IEEE Transactions on Signal Processing, 2004, 52(8): 2322-2336
  • 4Rasiwasia N, Moreno P J, Vasconcelos N. Bridging the gap: query by semantic example [J].IEEE Transactions on Multimedia, 2007, 9(5):923-938
  • 5Goh K S, Chang E, Cheng K T. SVM binary classifier ensembles for image classification [C]//Proceedings of the 10th International Conference on Information and Knowledge Management, Atlanta, 2001:395-402
  • 6Cusano C, Ciocca G, Schettini R. Image annotation using SVM [C]//Proceedings of SPIE, San Jose, 2004, 5304:330 -338
  • 7Gao Y L, Fan J P, Xue X Y, et al. Automatic image annotation by incorporating feature hierarchy and boosting to scale up SVM classifiers [C] //Proceedings of the 14th ACM International Conference on Multimedia, Santa Barbara, 2006:901-910
  • 8Chang E, Goh K, Sychay G, et al. CBSA: content-based soft annotation for multimodal image retrieval using Bayes point machines [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(1):26-38
  • 9Town C, Sinclair D. Content based image retrieval using semantic visual categories [ R].Cambridge: AT&T Laboratories, 2001
  • 10Li J, Wang J Z. Automatic linguistic indexing of pictures by a statistical modeling approach [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (9): 1075-1088

共引文献121

同被引文献11

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部