期刊文献+

中空MOFs的研究进展 被引量:1

Advances in hollow MOFs
下载PDF
导出
摘要 中空金属有机骨架材料MOFs因其具有高的比表面积、密度低、中空结构等优点受到人们广泛的关注,是近年来MOFs材料的一个重要研究方向。本文概括了中空结构MOFs(H-MOFs)制备方法的研究进展,重点介绍了聚苯乙烯牺牲剂和Cu_2O自我牺牲剂模板法、乳液型液-液和液-气界面的软模板法、Ostwald Ripening、Kirkendall效应等自组装方法的无模板法,并对其优缺点进行了讨论;探讨了中空MOFs在气体吸附和分离、催化方面的应用性能及在生物医药、磁性分离及环境保护方面的潜在应用;并提出今后H_MOFs研究的主要方向是合成新型H_MOFs、制备形貌多样、结晶性能好的新型高稳定性材料、精确控制壳层厚度以及开发新的H_MOFs制备方法。 H_MOFs have attracted considerable interest and found potential applications in many fields due to their special properties such as high surface area, low density and hollow structure, and the related reseach has been an important direction of MOFs materials. This article mainly featured recent research progress towards various preparation methods of H MOFs, with the focus on the hard-template routes including polystyrene and CUE0, the soft-template routes including emulsion-based interracial synthesis and gas-liquid interracial, and the template-free routes including Ostwald Ripening and Kirkendall effect were analyzed in detail. And the advantages and disadvantages of these methods, were discussed respectively. Applications of H_MOFs in gas adsorption and separation, catalysis, and potential applications of H_MOFs in biomedical, magnetic separation and environment protection were also discussed. The preparation of novel and highly stable H_MOFs materials with versatile morphology and good crystallinity, the precise control of shell thickness and the development of preparation methods of H_MOFs were proposed as the main future research and development directions of H MOFs.
出处 《化工进展》 EI CAS CSCD 北大核心 2017年第4期1333-1341,共9页 Chemical Industry and Engineering Progress
基金 江苏省杰出青年基金(BK20150044) 国家自然科学基金(91534110)项目
关键词 金属有机骨架材料 中空结构 制备 吸附 分离 催化 metal-organic frameworks hollow structure preparation adsorption separation catalysis
  • 相关文献

参考文献3

二级参考文献132

  • 1宁艳春,段巧丽,王兆花,陈绮莉.膜分离技术在废水处理方面的应用与进展[J].化工进展,2011,30(S1):828-830. 被引量:9
  • 2胡洪营,王超,郭美婷.药品和个人护理用品(PPCPs)对环境的污染现状与研究进展[J].生态环境,2005,14(6):947-952. 被引量:87
  • 3Zomoza B, Tellez C, Coronas J, et al. Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential[J]. Microporous Mesoporous Mater., 2013, 166: 67-78.
  • 4Robeson L M. Correlation of separation factor versus permeability for polymeric membranes[J]. J. Membr. Sci., 1991, 62 (2): 165-185.
  • 5Yaghi O M, O'Keeffe M, Oekwig N W, et al. Reticular synthesis and the design of new materials[J]. Nature, 2003, 423 (6941): 705-714.
  • 6Li J R, Sculley J, Zhou H C. Metal-organic frameworks for separations[J]. Chem. Rev., 2011, 112 (2): 869-932.
  • 7Zhang R, Ji S, Wang N, et al. Coordination-driven in situ self-assembly strategy for the preparation of metal-organic framework hybrid membranes[J]. Angew. Chem. Int. Ed., 2014, 53 (37): 9775-9779.
  • 8Shah M, McCarthy M C, Sachdeva S, et al. Current status of metal-organic framework membranes for gas separations: Promises and challenges[J]. Ind. Eng. Chem. Res., 2012, 51 (5): 2179-2199.
  • 9Jeazet H B T, Staudt C, Janiak C. Metal-organic frameworks in mixed-matrix membranes for gas separation[J]. Dalton Trans., 2012, 41 (46): 14003-14027.
  • 10Keskin S, Sholl D S. Assessment of a metal-organic framework membrane for gas separations using atomically detailed calculations: CO2, CH4, N2, HE mixtures in MOF-5 [J]. Ind. Eng. Chem. Res., 2008, 48 (2): 914-922.

共引文献63

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部