期刊文献+

基于灰色模型的铁路客流预测方法 被引量:2

Prediction Method of Railway Passenger Flow Based on Grey Model
下载PDF
导出
摘要 在GM(1,1)预测模型基础上,构建2个不同的预测模型——GM(1,1)幂模型和对原始数据进行缓冲算子处理的GM(1,1)模型,采用Matlab建模,并将模型应用到铁路客流量预测,分析对中小样本振荡序列的预测效果。实例证明,GM(1,1)幂模型和对原始数据进行缓冲算子处理的GM(1,1)模型的应用范围和预测精度都优于灰色GM(1,1)模型,是非线性铁路客流量预测的一种有效方法,有助于制定铁路运输计划。 Based on the GM ( 1,1 ) prediction model, two different prediction models, the GM ( 1, 1 ) power model and the GM ( 1,1 ) model for buffer operator processing of the original data, are constructed in the paper. The Matalb modeling is applied to the prediction of the railway passenger flow and to the analysis of the prediction effect of oscillatory sequence of' small and medium-sized samples. The example proves that the GM ( 1, 1 ) power model and the GM ( 1,1 ) model for buffer operator processing of the original data are better than the GM ( 1, 1 ) model in the application range and prediction precision, which is an effective calculation method for the nonlinear prediction of railway passenger flow and contributes to the decision-making of railway transportation.
作者 鲜敏 苗娇娜
出处 《山东交通学院学报》 CAS 2017年第1期29-33,共5页 Journal of Shandong Jiaotong University
关键词 灰色模型 非线性数列 铁路客流 预测 序列算子 grey model nonlinear sequence railway passenger flow prediction sequence operator
  • 相关文献

参考文献12

二级参考文献88

共引文献349

同被引文献28

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部