期刊文献+

Optimization of magnetic separation process for iron recovery from steel slag 被引量:3

Optimization of magnetic separation process for iron recovery from steel slag
原文传递
导出
摘要 To improve the efficiency of iron recovery from steel slag and reduce the wear-and-tear on facilities, a new method was proposed by adding a secondary screen sizer to the magnetic separation process according to grain size distribution of magnetic iron (M-Fe) in the slag. The final recycling efficiency was evaluated by calculating the percentage of recycled M-Fe to the maximum amount of M-Fe that could be recovered. Three types of slags, namely basic oxygen furnace slag, desul- furization slag, and iron ladle slag, were studied, and the results showed that the optimized re- covery efficieneies were 93.20%, 92. 48%, and 85.82% respectively, and the recycling efficien eies were improved by 9.58%, 7.11%, and 6.24% respectively. Furthermore, the abrasion between the mill equipment and the remaining slags was significantly reduced owing to the efficient recovery of larger M-Fe particles. In addition, the using amount of grinding balls was reduced by 0. 46 kg when every 1 t steel slag was processed. To improve the efficiency of iron recovery from steel slag and reduce the wear-and-tear on facilities, a new method was proposed by adding a secondary screen sizer to the magnetic separation process according to grain size distribution of magnetic iron (M-Fe) in the slag. The final recycling efficiency was evaluated by calculating the percentage of recycled M-Fe to the maximum amount of M-Fe that could be recovered. Three types of slags, namely basic oxygen furnace slag, desul- furization slag, and iron ladle slag, were studied, and the results showed that the optimized re- covery efficieneies were 93.20%, 92. 48%, and 85.82% respectively, and the recycling efficien eies were improved by 9.58%, 7.11%, and 6.24% respectively. Furthermore, the abrasion between the mill equipment and the remaining slags was significantly reduced owing to the efficient recovery of larger M-Fe particles. In addition, the using amount of grinding balls was reduced by 0. 46 kg when every 1 t steel slag was processed.
出处 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第2期165-170,共6页
基金 the funding of Chongqing Application and Development Project of China(cstc2014yykfB100007)
关键词 Steel slag Magnetic separation Iron recovery Recovery efficiency Abrasion Steel slag Magnetic separation Iron recovery Recovery efficiency Abrasion
  • 相关文献

同被引文献40

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部