摘要
基于拓扑优化理论,采用均匀化方法与能量法,建立了以负泊松比定义为目标函数的优化模型,分别在不同网格数目和不同体积比情况下求解得到相应微结构的二维最优拓扑构型,通过对网格数目及体积比采取控制变量原则,对求解后的拓扑构型结构及迭代次数与目标函数的收敛曲线对比,分析了网格数目及体积比对最优拓扑构型的影响.
Based on the topology optimization theory, the homogenization method and the energy method are used, an optimization model with negative Poisson's ratio as the objective function is established. The two--dimensional topological configurations of the corresponding microstructures are obtained under different mesh numbers and different volume ratios. The principle of control variables is adopted for mesh numbers and volume ratios, through the comparison of the corresponding topological structure and the convergence curves between the number of iterations and the objective function, the influences of mesh number and volume ratio on microstructure topological configuration are analyzed.
出处
《三峡大学学报(自然科学版)》
CAS
2017年第2期89-92,112,共5页
Journal of China Three Gorges University:Natural Sciences
基金
湖北省教育厅科学研究计划资助项目(D20161205)
关键词
微结构
拓扑优化
负泊松比
拓扑构型
microstructure
topology optimization
negative Poisson's ratio
topological configuration