期刊文献+

Structure Engineered g-C3N4 Nano-Sheets by Switching the Pyrolysis Gas Atmosphere for Enhanced Photo-Catalytic Degradation 被引量:3

Structure Engineered g-C3N4 Nano-Sheets by Switching the Pyrolysis Gas Atmosphere for Enhanced Photo-Catalytic Degradation
原文传递
导出
摘要 We developed a new one step approach to synthesize g-C3N4 nano-sheets by direct thermal pyrolysis process of urea in NH3 atmosphere. For the first time, the influence of the preparation gas atmosphere on the composition, crystalline and polymerization degree, and the activity of the g-C3N4 synthesized from thermal condensation of urea was investigated. Impressively, the g-C3N4 nano-sheets obtained under NH3 gas atmosphere exhibited much superi- or photo-catalytic activities to the prepared g-C3N4 in air or N2, and the rate of the g-C3N4-NH3 was about 5 times higher than that on g-C3N4-N2 sample. The detailed characterization analysis revealed that NH3 thermal pyrolysis atmosphere contributed to the polymerization degree and the formation of the layer with a more regular structure due to the efficiently extending of the conjugated π-conjugative system, which was favorable to the transfer of the photo-induced charge carriers. Furthermore, we studied in depth the structure-performance relationship in the sys- tem, and it was found that the synergistic effect of the larger surface area, the adjusted band energy structure and the well crystallization may be conductive to the higher separation of the electron-hole pair, thus leading to the won- derful performance for the g-C3N4-NH3. Notably, the method has the merits of low cost, scalable production and environmental friendliness. We developed a new one step approach to synthesize g-C3N4 nano-sheets by direct thermal pyrolysis process of urea in NH3 atmosphere. For the first time, the influence of the preparation gas atmosphere on the composition, crystalline and polymerization degree, and the activity of the g-C3N4 synthesized from thermal condensation of urea was investigated. Impressively, the g-C3N4 nano-sheets obtained under NH3 gas atmosphere exhibited much superi- or photo-catalytic activities to the prepared g-C3N4 in air or N2, and the rate of the g-C3N4-NH3 was about 5 times higher than that on g-C3N4-N2 sample. The detailed characterization analysis revealed that NH3 thermal pyrolysis atmosphere contributed to the polymerization degree and the formation of the layer with a more regular structure due to the efficiently extending of the conjugated π-conjugative system, which was favorable to the transfer of the photo-induced charge carriers. Furthermore, we studied in depth the structure-performance relationship in the sys- tem, and it was found that the synergistic effect of the larger surface area, the adjusted band energy structure and the well crystallization may be conductive to the higher separation of the electron-hole pair, thus leading to the won- derful performance for the g-C3N4-NH3. Notably, the method has the merits of low cost, scalable production and environmental friendliness.
出处 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2017年第2期173-182,共10页 中国化学(英文版)
关键词 g-C3N4 nano-sheets NH3 UREA photo-catalyst g-C3N4, nano-sheets, NH3, urea, photo-catalyst
分类号 O [理学]
  • 相关文献

同被引文献23

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部