期刊文献+

基于多特征的人机交互式目标分割 被引量:4

Interactive object segmentation with multiple image features
下载PDF
导出
摘要 传统的Livewire算法仅通过目标和背景的亮度差异获得目标边缘,以人机交互方式完成目标分割。为提高目标分割的精度和效率,进一步引入了目标和背景之间的色彩差异、纹理差异等信息。新的Livewire算法计算像素的亮度、色彩、纹理的统计直方图梯度,用logistic回归合成图像的边缘特征,再应用Dijkstra最短路径算法来完成目标分割。分割测试结果表明:在多数图像分割中,多特征的Livewire算法在分割精度和交互效率上要优于仅使用亮度特征的传统方法。 Traditional Livewire image segmentation algorithms get object edges based on brightness differences of object and background, and achieve object segmentation by human computer interaction. In order to improve the accuracy and efficiency of segmentation, a new livewire algorithm is proposed in which the information such as color difference and texture difference between the object and the background are applied. The new algorithm computes the histogram gradients of brightness,color,and texture of pixels,which synthesizes the image edges by logistic regression and segments the objects by Dijkstra's shortest path algorithm. The segmentation experiments shows that the new livewire algorithm with multiple features has better accuracy and efficiency than the traditional ones which only use brightness in many segmentations.
出处 《广西大学学报(自然科学版)》 CAS 北大核心 2017年第2期742-747,共6页 Journal of Guangxi University(Natural Science Edition)
基金 国家自然科学基金资助项目(61572285,61272237) 湖北省水电工程智能视觉监测重点实验室2016年开放基金资助项目(2016KLA05)
关键词 图像处理 图像分割 边缘检测 image processing image segmentation edge detection
  • 相关文献

参考文献8

二级参考文献209

  • 1骆俊,马尽文.高斯混合模型的遗传分基融合算法[J].信号处理,2005,21(z1):395-398. 被引量:2
  • 2李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757. 被引量:125
  • 3孙业明,关山,牛海波.基于小波变换的针叶苗木彩色图像分割[J].东北电力学院学报,2005,25(6):9-13. 被引量:2
  • 4贾云涛,胡事民.基于图切分的交互式图像染色算法[J].计算机学报,2006,29(3):508-512. 被引量:15
  • 5Withey D J, Koles Z J. Three generations of medical image segmentation: Methods and available software. International Journal of Bioelectromagnetism, 2007, 9:67-68.
  • 6Carlos Alexandre Barros de Mello. Biomedical Engineering. Croatia.. InTech, 2009.
  • 7Zuva T, Olugbara O O, O]o S O, et al. Image segmentation, available techniques, developments and open issues. Canadian Journal on Image Processing and Computer Vision, 2011, 2(3): 20-29.
  • 8Yoo T. Insight into Images Principles and Practice for Segmentation, Registration and Image Analysis. Wellesley, Mass.. A K Peters. 2004.
  • 9Zitova B. Image registration methods: A survey. Image and Vision Computing, 2003, 21(11): 977-1000.
  • 10Neera] S, Lalit M A. Automated medical image segmentation techniques. Journal of Medical Physics, 2010, 35(1): 3-14.

共引文献169

同被引文献25

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部