期刊文献+

基于太赫兹超材料的微流体折射率传感器 被引量:4

Terahertz refractive index sensing of microfluid based on metamaterials
原文传递
导出
摘要 设计加工了一种太赫兹超材料微流体传感器件,利用时域有限差分法(Finite Difference Time Domain,FDTD)对其在太赫兹波段的传输、谐振及传感特性进行数值模拟。采用太赫兹时域光谱系统实验研究了偏振方向对传感器灵敏度的影响。实验结果表明,当超材料谐振环开口方向与入射太赫兹波的偏振方向平行和垂直时,折射率传感灵敏度可分别达到39.29 GHz/RIU和74.43 GHz/RIU。通过等效电路模型对该超材料器件的传输和谐振特性做了分析,并进一步明确了其传感机制。该超材料器件可对微量液体(5μl/mm^2)实现芯片式的折射率传感,具有较高的传感灵敏度,在化学生物传感器的设计和制造领域具有潜在的应用前景。 A metamaterial device was designed and fabricated for microfluidic sensing in the terahertz regime, its transmission, resonance and sensing properties were numerically simulated in terms of the Finite Difference Time Domain(FDTD). The influence of polarization direction on the sensitivity of sensor was experimentally investigated by terahertz time-domain spectroscopy system. The experimental result shows that when the resonant metamaterial ring opening direction is parallel and perpendicular with the direction of polarization of the incident THz wave, the refractive index sensing sensitivity can reach 39.29 GHz/RIU and 74.43 GHz/RIU, respectively. The transmission and resonance characteristics of the metamaterials are analyzed by the equivalent circuit model to further clarify the sensing mechanism. This THz metamaterial device has the potential applications in sensing chemical and biological component because it is capable of realizing the refractive index sensing of microliquid (5 μl/mm^2) with a high sensitivity.
出处 《红外与激光工程》 EI CSCD 北大核心 2017年第4期116-121,共6页 Infrared and Laser Engineering
基金 国家重点基础研究发展计划(2014CB339800) 国家自然科学基金(61171027 61505088) 天津市自然科学基金(15JCQNJC02100) 国家高技术研究发展计划(2011AA010205) 高等学校博士学科点专项科研基金(20131201120004)
关键词 太赫兹 超材料 传感 terahertz metamaterials sensing
  • 相关文献

参考文献4

二级参考文献38

  • 1McBratney A, Whelan B, Ancev T. Future directions of precision agriculture [J]. Precision Agriculture, 2005, 6(1): 7-23.
  • 2Whelan B M, McBratney A B. Definition and interpretation of potential management zones in Australia [C]//Proceedings of the llth Australian Agronomy Conference, 2003, 107: 3823-3830.
  • 3Kou S Z. Mircofluidic detection of mutiple heavy metal ions using fluorescent chemosensors [J]. Bull Korean Chera Soc, 2009, 30(5): 1173-1176.
  • 4Li B, Cao W, Mathanker S, et al. Preliminary study on quality evaluation of pecans with terahertz time-domain spectroscopy[C]//SPIE, 2010, 7854: 882201.
  • 5Altin O, Ozbelge H O, Timur D. Use of general purpose adsorption isotherms for heavy metal-clay mineral interactions [J]. J CoUoi Interf Sci, 1998, 198(3): 130-140.
  • 6Bambang K. Simple optical fiber biosensor based on immobilized enzyme for monitoring of trace heavy metal ions[J]. Anal Bioanal Chem, 2003, 376(7): 1104-1110.
  • 7Darwish I A, Blake D A. One-step competitive immunoassay for cadmium ions: development and validation forenvironmental water samples[J]. Analytical Chemistry, 2001, 73(2): 1889-1895.
  • 8Ding M, Dejong B, Roosendaal S J, et al. XPS studies on the electronic structure of bonding between solid and solutes: Adsorption of arsenate, chrormate, phosphate, Pb2+ and Zn2" ions on amorphous black ferric oxyhydroxidc [J]. Geochim Cosmochim Ac, 2000, 64(3): 1209-1219.
  • 9Malitesta C, Guascito M R. Heavy metal determination by biosensors based on enzyme immobilized by clectropoly-merisation[J]. Biosensor Bioelectron, 2005, 20(8): 1643-1647.
  • 10Zhang C L. THz Sensing and Imaging[M]. Beijing: National Defense Industry Press, 2009. (in Chinese).

共引文献51

同被引文献19

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部