期刊文献+

基于复合稀疏约束的近似消息传递CS重构算法 被引量:1

An Approximate Message Passing Algorithm with Composite Sparse Constraint for CS Reconstruction
下载PDF
导出
摘要 压缩感知(CS)重构中的近似消息传递(AMP)算法通过迭代执行小波阈值操作和残差更新来快速准确地实现稀疏信号重构,但它所采用的小波系数稀疏约束并不适用于非稀疏的自然图像,尤其CS观测过程存在噪声干扰时.为此,文中提出了一种基于复合稀疏约束和AMP框架的CS图像重构算法,使用相似图像块低秩约束和双边滤波约束作为自然图像的联合先验信息,以改善图像规则纹理和边缘的恢复效果,从而提升算法的重构性能.无噪CS观测的重构实验表明,文中算法的峰值信噪比(PSNR)比仅用低秩约束的AMP算法提高了0.45 d B,比原始AMP算法高6.19 d B;而在含噪CS观测的重构实验中,对应的PSNR增益则分别是0.25和4.60 d B;无论是无噪观测还是含噪观测,文中算法都获得了更佳的主观视觉效果. In CS reconstruction, approximate message passing (AMP) can realize the reconstruction of sparse sig-nals quickly and accurately by performing both wavelet de-noising and residual updating iteratively. However, the sparse constraints of the wavelet coefficients used in AMP are not suitable for non-sparse natural images, especially when the measuring process of CS is disturbed by noises. In order to solve this problem, a CS image reconstruction algorithm is proposed on the basis of composite sparse constraints and an AMP framework. This algorithm takes both the low-rank constraint of similar image patches and the bilateral filter constraint as the joint prior information of natural images to enhance the recovery effect of image textures and edges, thus improving the performance of the algorithm. The results of the reconstruction experiment with no noise in the measuring process of CS show that, the proposed algorithm averagely improves PSNR (Peak Signal to Noise Ratio) by 0.45dB and 6.19dB, respectively in comparison with the AMP algorithm that only uses low-rank constraint and the original AMP algorithm. While in the presence of noise, the corresponding average PSNR gains are respectively 0.25dB and 4.60dB. In conclusion, the proposed algorithm can achieve a better visual quality whether it is noiseless or not.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第1期18-25,共8页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61471173)~~
关键词 压缩感知 近似消息传递 复合稀疏约束 低秩约束 双边滤波 compressed sensing approximate message passing composite sparse constraint low-rank constraint bilateral filter
  • 相关文献

参考文献1

二级参考文献15

  • 1Donoho D L. Compressed sensing [ J]. IEEE Transactions on Information Theory,2006,52(4) :1289-1306.
  • 2Candes E J, Wakin M B. An introduction to compressive sampling [ J ]. IEEE Signal Processing Magazine,2008,25 (2) :21-30.
  • 3Tropp J A, Wright S J. Computational methods for sparse solution of linear inverse problems [J].Proceedings of the IEEE,2010,98 (6) :948-958.
  • 4Chen S S, Donoho D L, Saunders M A. Atomic decomposi- tion by basis pursuit [ J ]. SIAM Journal on Scientific Computing, 1999,20( 1 ) :33-61.
  • 5He Z S,Cichocki A. Improved FOCUSS method with con- jugate gradient iterations [ J]. IEEE Transactions on Sig- nal Processing,2009,57 ( 1 ) :399-404.
  • 6Mallat S G, Zhang Z F. Matching pursuits with time-fre- quency dictionaries [ J ]. IEEE Transactions on Signal Processing, 1993,41 (12) :3397-3415.
  • 7Tropp J A, Gilbert A C. Signal recovery from random mea- surements via orthogonal matching pursuit [ J]. IEEE Tran-sactions on Information Theory,2007,53 (12) :4655-4666.
  • 8Cai T T, Wang L. Orthogonal matching pursuit for sparse signal recovery with noise [ J ]. IEEE Transactions on In- formation Theory ,2011,57 ( 7 ) :4680-4688.
  • 9Needell D,Tropp J A. CoSaMP:iterative signal recovery from incomplete and inaccurate samples [ J ]. Applied and Computational Harmonic Analysis, 2009,26 ( 3 ) : 301-321.
  • 10Varadarajan B, Khudanpur S,Trac T D. Stepwise optimal subspaee pursuit for improving sparse recovery [ J ]. IEEE Signal Processing Letters,2011,18 ( 1 ) :27-30.

共引文献2

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部