期刊文献+

深度学习发展综述 被引量:39

Review of Deep Learning Development
下载PDF
导出
摘要 鉴于深度学习的研究和应用价值及在学术和工业领域中的重要地位,对目前有代表性的主流的深度学习网络模型进行介绍,概述了深度学习当前发展状态,综述了深度学习发展方向。首先介绍了深度学习的历史沿革,根据应用研究对四种主要深度学习网络进行介绍,然后从网络性能提升、网络体系发展、新学习模式探索、深度强化学习、可视化理论研究五个方面总结了目前深度学习的发展状态,最后提出下一步深度学习发展展望。可以看到:深度学习在不同领域都有广泛的应用,而且具有明显的优势,但也存在需要进一步深入探索的问题,如提高深度学习的智能性、提高无标签数据的利用率等。 Considering deep learning's value of researching and applying and the importance in academic and industry area,this paper reviews the main stream deep learning network models and gives theirs introduction.First,the history of deep learning is introduced.According to applying research,four deep learning network of the main streams are introduced.Second,the developing state of current deep learning is summarizedfrom five aspects which are network performance improvement,net system development,the new learning model to explore,deep reinforce learning and visualization theory research.Last,development prospect of deep learning comes up.Although deep learning outperform other methods abviously in different fields,there are still some issues needed to be solved,such as intelligence of deep learning improvement,raising the utilization ratio of data without labels.
出处 《舰船电子工程》 2017年第4期5-9,111,共6页 Ship Electronic Engineering
关键词 深度学习 卷积神经网络 半监督学习 深度强化学习 人工智能 deep learning convolution neural network semi-supervised learning deep reinforce learning artificial intelligence
  • 相关文献

参考文献4

二级参考文献262

  • 1史忠值.神经网络[M].北京:高等教育出版社,2009.
  • 2MarkoffJ. How many computers to identify a cat?[NJ The New York Times, 2012-06-25.
  • 3MarkoffJ. Scientists see promise in deep-learning programs[NJ. The New York Times, 2012-11-23.
  • 4李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013.
  • 510 Breakthrough Technologies 2013[N]. MIT Technology Review, 2013-04-23.
  • 6Rumelhart D, Hinton G, Williams R. Learning representations by back-propagating errors[J]. Nature. 1986, 323(6088): 533-536.
  • 7Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science. 2006, 313(504). Doi: 10. 1l26/science. 1127647.
  • 8Dahl G. Yu Dong, Deng u, et a1. Context-dependent pre?trained deep neural networks for large vocabulary speech recognition[J]. IEEE Trans on Audio, Speech, and Language Processing. 2012, 20 (1): 30-42.
  • 9Jaitly N. Nguyen P, Nguyen A, et a1. Application of pretrained deep neural networks to large vocabulary speech recognition[CJ //Proc of Interspeech , Grenoble, France: International Speech Communication Association, 2012.
  • 10LeCun y, Boser B, DenkerJ S. et a1. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, I: 541-551.

共引文献1261

同被引文献435

引证文献39

二级引证文献161

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部