期刊文献+

基于Wi-Fi的非接触式行为识别研究综述 被引量:8

Survey on Wi-Fi based contactless activity recognition
下载PDF
导出
摘要 准确地获取包括人的状态和动作等情境信息一直以来都是普适计算的重要研究方向,具有很大的应用价值.作为一种廉价、非侵扰型的感知手段,基于Wi-Fi的无接触式行为识别技术已经成为一个新兴的、极具潜力的研究领域.从历史概述、理论研究、模型研究、核心技术到应用场景这四个方面总结该领域的研究现状.在总结现有工作所取得的进展和存在的问题的同时,提出该领域将来可能的研究方向. Providing accurate information about human's state and activity is one of the most important elements in ubiquitous computing.Various applications can be enabled if one's state and activity can be recognized.Due to the low deployment cost and non-intrusive sensing nature, Wi-Fi based activity recognition has become a promising and emerging research area.The state-of-the-art of the area was surveyed from four aspects ranging from historical overview,theories and models,key techniques to applications.In addition to the summary about the principles and achievements of existing work,some open issues and research directions in this emerging area were presented.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2017年第4期648-654,690,共8页 Journal of Zhejiang University:Engineering Science
基金 国家重点研发计划资助项目(2016YFB1001200) 国家自然科学基金资助项目(61572048) 上海国资委能级提升项目(2014-C-1-02)
关键词 行为识别 WI-FI 无接触式感知 activity recognition Wi-Fi contactless sensing
  • 相关文献

参考文献1

二级参考文献23

  • 1T. Ralston, G. Charvat, and J. Peabody, Real-time Through-wall Imaging using an Ultrawideband Multiple?Input Multiple-Output (MIMO) phased array radar system, in Proc. of 4th IEEE Int. Symposium on Phased Array Systems and Technology, Boston, USA, 2010, pp. 551- 558.
  • 2M. Youssef, M. Mah, and A. Agrawala, Challenges: Device-free passive localization for wireless environments, in Proc. of 13th ACM Annual Int. Conl on Mobile Computing and Networking, Montreal, Canada, 2007, pp. 222-229.
  • 31. Wilson and N. Patwari, Radio tomographic imaging with wireless networks, IEEE Trans. Mobile Comput., vol. 9, no. 5,pp. 621-632,2010.
  • 4Z. Zhou, Z. Yang, C. Wu, L. Shangguan, and Y. Liu, Towards omnidirectional passive human detection, in Proc. of 32nd IEEE Int. Conl on Computer Communications, Turin, Italy, 2013, pp. 3057-3065.
  • 5W. Xi, J. Zhao, X.- Y. Li, K. Zhao, S. Tang, X. Liu, and Z. Jiang, Electronic frog eye: Counting crowd using WiFi, in Proc. of 33rd IEEE Int. Conl on Computer Communications, Toronto, Canada, 2014, pp. 361-369.
  • 6Q. Pu, S. Gupta, S. Gollakota, and S. Patel, Whole-home gesture recognition using wireless signals, in Proc. oj' 19th ACM Annual Int. Conl on Mobile Computing and Networking, Miami, USA, 2013, pp. 27-38.
  • 7Y. Wang, J. Liu, Y. Chen, M. Gruteser, J. Yang, and H. Liu, E-eyes: Device-free location-oriented activity identification using fine-grained WiFi, in Proc. of 20th ACM Annual Int. Conf. on Mobile Computing and Networking, Maui, USA, 2014, pp. 617-628.
  • 8G. Wang, Y. Zou, Z. Zhou, K. Wu, and L. M. Ni, We can hear you with Wi-Fil in Proc. of 20th ACM Annual Int. Conf. on Mobile Computing and Networking, Maui, USA, 2014, pp. 593-604.
  • 9P. Melgarejo, X. Zhang, P. Ramanathan, and D. Chu, Leveraging directional antenna capabilities for fine?grained gesture recognition, in Proc. of 2014 ACM Int. Joint Conl on Pervasive and Ubiquitous Computing, Seattle, USA, 2014, pp. 541-551.
  • 10X. Liu, J. Cao, S. Tang, and 1. Wen, Wi-Sleep: Contactless sleep monitoring via WiFi signals, in Proc. of 35th IEEE Real-Time Systems Symposium, Rome, Italy, 2014.

共引文献10

同被引文献50

引证文献8

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部