期刊文献+

基于等效静态载荷法的车身碰撞拓扑优化 被引量:10

Topology Optimization of Automotive Body Crashworthiness Design with Equivalent Static Loads Method
下载PDF
导出
摘要 将约束释放作为边界条件引入基于等效静态载荷法的拓扑优化中,以应变能作为整车刚度的评价指标,引入相对位移作为部件柔度的评价指标.对比研究了整车正碰工况下采用约束释放和单点约束作为碰撞分析模型的拓扑优化的异同以及不同优化目标对优化结果的影响.研究结果表明:采用约束释放作为边界条件的优化结果更集中于碰撞发生位置的结构优化,而采用单点约束作为边界条件的结果更倾向于在约束处分布材料;相对位移最小可以作为优化目标,而最大化相对位移最好转化为约束条件再优化. The crashworthiness topology optimization of body in white (BIW) under frontal impact loading was carried out by using the equivalent static loads method (ESL). Inertia relief was introduced as boundary conditions; strain energy was adopted as strain energy and relative displacement was employed as the compliance index of the components and parts. A series of comparative studies were executed to discuss the effects of different boundary conditions and various optimization objectives. The results show that if an inertia relief is used as a boundary condition, the ESL-based topology optimization results have a tendency to distribute more material on the impact occurred position, while the single point constraint ( SPC ) boundary conditions tend to concentrate more materials on the contrived SPC restrained positions. In addition, minimizing relative displacements is suitable for the ESL-based topology optimization, but maximizing relative displacements should be transformed into constraints to perform the optimization.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第3期391-397,共7页 Journal of Tongji University:Natural Science
基金 国家自然科学基金(51575399) "十三五"国家科技支撑计划(2016YFB010600)
关键词 车身结构 拓扑优化 碰撞分析 正碰工况 等效 静态载荷法 automotive body structure topologyoptimization crashworthiness design frontal impact equivalent static loads method(ESL)
  • 相关文献

参考文献3

二级参考文献43

  • 1高云凯,孟德建,姜欣.电动改装轿车车身结构拓扑优化分析[J].中国机械工程,2006,17(23):2522-2525. 被引量:30
  • 2Park G J. Technical Overview of the Equivalent Static Loads Method for Non-linear Static Re- sponse Structural Optimization [J]. Struct. Mul- tidise Optim. ,2011,43(3) :319-337.
  • 3Ortmann C. Graph and Heuristic Based Topology Optimization of Crash Loaded Structures [J]. Struet. Multidise Optim. ,2013,47(6) :839-854.
  • 4Inou N,Shimotai N,Uesugi T. Cellular Automaton Generating Topological Struetures[C]//Seeond Eu- ropean Conference on Smart Structures and Materi- als. Glasgow,UK,2011 :47-50.
  • 5Patel N M,Kang B S,Renaud J E. Topology Synthe- sis of Structures under Impact Loading Using a Hy- brid Cellular Automaton Algorithm[C]//Proceed- ings of the llth AIAA/ISSMO Symposium on Mul- tidiseiplinary Analysis and Optimization. Ports- mollth. VA.2006,1-19_.
  • 6榻伟旗.车身前部抗撞性优化的研究[D].长春:吉林大学,2004.
  • 7Tovar A. Bone Remodeling as a Hybrid Cellular Au- tomaton Optimization Process[D]. Notre Dame: University of Notre Dame, 2004.
  • 8Bendsoe M P, Kikuchi N. Generating Optimal To- pologies in Structural Design Using Homogenization Method[J]. Computer Methods in Applied Mechan- ics and Engineering, 1998,2 : 197-224.
  • 9Rozvany G I N,Bendsoe M P,Kirsh U. Optimality Criteria a Basis for Multidisciplinary Optimization[J]. Appl. Mech. Rev.,1994,48:41-119.
  • 10Yoon G H, Kim Y Y. Topology Optimization of Material-Nonlinear Continuum Structures by the Element Connectivity Parameterization[J]. Int. J. Numer. Methods Eng. ,1997,69:2196-2218.

共引文献36

同被引文献62

引证文献10

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部