期刊文献+

Hilbert空间中K-g-框架的一些新结果

Some New Results for K-g-Frames in Hilbert Spaces
下载PDF
导出
摘要 利用算子理论方法构建了Hilbert空间中K-g-框架的一个新对偶,通过它等价刻画了关于不同闭子空间序列的K-g-框架和g-Bessel序列之间的关系.特别地,利用对偶K-g-框架得到了K-g框架稳定性的新结果.此外给出了构造K-g-框架的一些新方法. This article establishes a new dual for K-g-frames in Hilbert spaces by the method of operator theory, with which a relation between a K-g-frame and a g-Bessel sequence with respect to different sequences of closed subspaces is equivalently characterized and particularly, a new stability result for K-g-frames is presented by using the corresponding dual K-g-frames. Moreover, some new methods for constructing K-g-frames are also given.
出处 《应用泛函分析学报》 2017年第1期104-112,共9页 Acta Analysis Functionalis Applicata
基金 国家自然科学基金(11461055 11561057) 江西省自然科学基金(20151BAB201007) 江西省教育厅科学技术研究项目(GJJ151061)
关键词 K-g-框架 对偶K-g-框架 Q-对偶 K-g-框架 K-g-frame dual K-g-frame Q-dual K-g-frame
  • 相关文献

参考文献5

二级参考文献45

  • 1Auscher P. Wavelets, fractals and application. PhD Thesis. Paris: University of Paris-Dauphine, 1989.
  • 2Chui C K, Wang J Z. A cardinal spline approach to wavelets. Proc Amer Math Soc, 1991, 113: 785-793.
  • 3Chui C K, Wang J Z. A general framework of compactly supported splines and wavelets. J Approx Theory, 1992, 71:263-304.
  • 4Chui C K, Wang J Z. On compactly supported spline wavelets and a duality principle. Trans Amer Math Soc, 1992,330: 903-915.
  • 5Paluszyński M,?iki? H, Weiss G, et al. Tight frame wavelets, their dimension functions, MRA tight frame wavelets and connectivity properties. Adv Comput Math, 2003, 18: 297-327.
  • 6Baki? D. Semi-orthogonal Parseval frame wavelts and generalized multiresolution analyses. Appl Comput Harmon Anal, 2006, 21: 281-304.
  • 7Baki? D. On admissible generalized multiresolution analyses. Grazer Math Ber, 2006, 348: 15-30.
  • 8Liu Z, Hu G, Wu G, et al. Semi-orthogonal frame wavelets and Parseval frame wavelets associated with GMRA. Chaos Solitons Fractals, 2006, 38: 1449-1456.
  • 9Kim H O, Kim R Y, Lim J K. Semi-orthogonal frame wavelets and frame multi-resolution analysis. Bull Austral Math Soc, 2002, 65: 35-44.
  • 10Dai X, Larson D R, Speegle D M. Wavelet set in Rn. J Fourier Anal Appl, 1997, 3: 451-456.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部