摘要
利用Leray-Schauder度定理,研究具有形式x^(n)(t)+f(t,x^(1)(t),x^(2)(t),…,x^(n-1)(t))+Σmi=1g_i(t,x(t-τ_i(t)))=e(t)的方程,得到了方程反周期解存在唯一性的充分条件;最后举例说明结果的有效性.
By using Leray-Schauder degree theorem, a class of high-order differential equation with multiple deviating arguments as follows: x^(n)(t)+f(t,x^(1)(t),x^(2)(t),…,x^(n-1)(t))+Σmi=1gi(t,x(t-τi(t)))=e(t) is studied.A deviating argument on the existence and uniqueness of anti-periodic solution is obtained, Anexample is given to illustrate the validity of the results.
出处
《重庆工商大学学报(自然科学版)》
2017年第2期1-5,共5页
Journal of Chongqing Technology and Business University:Natural Science Edition
基金
国家自然科学基金(10771001)
安徽省教育厅自然科学基金(KJ20138153
KJ20132218)
安徽省质量工程项目(2016jyxm0681
2016jxt01050
2016gxk093)
亳州学院科研项目(BZSZKYXM201302
BSKY201539)