期刊文献+

一类具有多个偏差变元高阶微分方程反周期解的存在唯一性 被引量:2

Existence and Uniqueness of Anti-Periodic Solutions for a Class of High-order Differential Equation with Multiple Deviating Arguments
下载PDF
导出
摘要 利用Leray-Schauder度定理,研究具有形式x^(n)(t)+f(t,x^(1)(t),x^(2)(t),…,x^(n-1)(t))+Σmi=1g_i(t,x(t-τ_i(t)))=e(t)的方程,得到了方程反周期解存在唯一性的充分条件;最后举例说明结果的有效性. By using Leray-Schauder degree theorem, a class of high-order differential equation with multiple deviating arguments as follows: x^(n)(t)+f(t,x^(1)(t),x^(2)(t),…,x^(n-1)(t))+Σmi=1gi(t,x(t-τi(t)))=e(t) is studied.A deviating argument on the existence and uniqueness of anti-periodic solution is obtained, Anexample is given to illustrate the validity of the results.
出处 《重庆工商大学学报(自然科学版)》 2017年第2期1-5,共5页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 国家自然科学基金(10771001) 安徽省教育厅自然科学基金(KJ20138153 KJ20132218) 安徽省质量工程项目(2016jyxm0681 2016jxt01050 2016gxk093) 亳州学院科研项目(BZSZKYXM201302 BSKY201539)
关键词 偏差变元 LERAY-SCHAUDER度 反周期解 deviating argument Leray-Schauder degree anti-periodic solution
  • 相关文献

参考文献4

二级参考文献38

  • 1陈太勇,刘文斌,张建军,章美月.Liénard方程反周期解的存在性[J].数学研究,2007,40(2):187-195. 被引量:6
  • 2Villari G.Periodic solutions of Lienard equation[J].J Math Anal Appl,1982,86:376-386.
  • 3Villari G.On the existence of periodic solutions of the Lienard equation[J].Nonlinear Anal,1983,7:71-78.
  • 4Mawhin J L,Ward J R.Periodic solutions of some forced Lienard differential equation at resonance[J].Arch Math,1983,41:337-351.
  • 5Aizicivici S,McKibben M,Reish S.Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities[J].Nonlinear Anal,2001,43:233-251.
  • 6Liu Bingwen.Anti-periodic solutions for forced Rayleigh-type equations[J].Nonlinear Analysis:Real Word Applications,2009,10:2850-2856.
  • 7Chen Y,Nieto J J,ORegan D.Anti-periodic solutions for fully nonlinear first-order differential equations[J].Mathematical and Computer Modelling,2007,46:1183-1190.
  • 8Deimling K.Nonlinear functional analysis[M].New York:Springer-Verlag,1985.
  • 9Mawhin J.An extension of the theorem of A C Lazer on forced nonlinear Oscillations[J].J Math Anal Appl,1972,40:20-29.
  • 10YU Y H,SHAO J Y,YUE G X.Existence and uniqueness of anti-periodic solutions for a kind of Rayleigh equation with two deviating arguments[J].Nonlinear Anal,2009,71:4689-4695.

共引文献12

同被引文献22

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部