期刊文献+

Valley polarization in stacked MoS2 induced by circularly polarized light 被引量:3

Valley polarization in stacked MoS2 induced by circularly polarized light
原文传递
导出
摘要 Manipulation of valley pseudospins is crucial for future valleytronics. lhe emerging transition metal dichalcogenides (TMDs) provide new possibilities for exploring the interplay among the quantum degrees of freedom, including real spin, valley pseudospin, and layer pseudospin. For example, spin-valley coupling results in valley-dependent circular dichroism in which electrons with particular spin (up or down) can be selectively excited by chiral optical pumping in monolayer TMDs, whereas in few-layer TMDs, the interlayer hopping further affects the spin-valley coupling. In addition to valley and layer pseudospins, here we propose a new degree of freedom--stacking pseudospin--and demonstrate new phenomena correlated to this new stacking freedom that otherwise require the application of external electrical or magnetic field. We investigated all possible stacking configurations of chemical-vapor-deposition-grown trilayer MoS2 (AAA, ABB, AAB, ABA, and 3R). Although the AAA, ABA, 3R stackings possess a sole peak with lower degree of valley polarization than that in monolayer samples, the AAB (ABB) stackings exhibit two distinct peaks, one similar to that observed in monolayer MoS2 and findings provide a more future valleytronics. an additional unpolarized complete understanding of peak at lower energy. Our valley quantum control for Manipulation of valley pseudospins is crucial for future valleytronics. lhe emerging transition metal dichalcogenides (TMDs) provide new possibilities for exploring the interplay among the quantum degrees of freedom, including real spin, valley pseudospin, and layer pseudospin. For example, spin-valley coupling results in valley-dependent circular dichroism in which electrons with particular spin (up or down) can be selectively excited by chiral optical pumping in monolayer TMDs, whereas in few-layer TMDs, the interlayer hopping further affects the spin-valley coupling. In addition to valley and layer pseudospins, here we propose a new degree of freedom--stacking pseudospin--and demonstrate new phenomena correlated to this new stacking freedom that otherwise require the application of external electrical or magnetic field. We investigated all possible stacking configurations of chemical-vapor-deposition-grown trilayer MoS2 (AAA, ABB, AAB, ABA, and 3R). Although the AAA, ABA, 3R stackings possess a sole peak with lower degree of valley polarization than that in monolayer samples, the AAB (ABB) stackings exhibit two distinct peaks, one similar to that observed in monolayer MoS2 and findings provide a more future valleytronics. an additional unpolarized complete understanding of peak at lower energy. Our valley quantum control for
出处 《Nano Research》 SCIE EI CAS CSCD 2017年第5期1618-1626,共9页 纳米研究(英文版)
关键词 circularly polarizedphotoluminescence first-principlescalculations molybdenum disulfide ultra-low-frequency Raman spectroscopy valley polarization circularly polarizedphotoluminescence,first-principlescalculations,molybdenum disulfide,ultra-low-frequency Raman spectroscopy, valley polarization
分类号 O [理学]
  • 相关文献

参考文献1

共引文献8

同被引文献19

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部