期刊文献+

基于指静脉生物特性的身份识别系统研究与设计 被引量:1

Research and design of identification system based on the biological characteristics of finger vein
下载PDF
导出
摘要 在人员身份识别系统设计中,往往利用了生物特性信息,当前广泛使用的一些识别方法的识假率和拒真率相对较高.指静脉识别利用手指流动血液中的血红蛋白对特定波长光线的吸收从而形成唯一的静脉血管图像,具有活体性、效率高、适应性好等特点.利用这一生物特性,设计了指静脉身份识别系统,对采集到的数据进行分析、处理、加密,并与事前录入的指静脉模板信息进行匹配,最后通过网络传输至服务器完成身份识别和认证工作.试验结果表明,基于指静脉的生物特征识别具有速度快、不可伪造等优点. Biological characteristics are usually used in the design of identification system. The false acception rate(FAR) and false rejection rate(FRR) are relatively high of some identification methods that are widely used. Finger-vein recognition forms unique figure of vein, exploiting absorption of specific wavelength light by hemoglobin in the flowing blood of fingers. It is high-efficient, well-adaptive and living body needed. According to these features, this paper design a finger-vein identification sys- tem, in which the collected data are analyzed, encrypted, then matched to pre-entered finger vein templates. Finally, identification and authentication are achieved by information exchange between frontend equipment and network server. Experiments results show that finger-vein identification operates fast and can not be cheated.
出处 《闽江学院学报》 2017年第2期47-53,共7页 Journal of Minjiang University
基金 福建省中青年教师教育科研项目(JA14254 JA15412) 福州市科技计划项目(2015-G-52)
关键词 身份识别 指静脉 嵌入式系统 生物特征 identification finger-vein embedded system biological feature
  • 相关文献

参考文献5

二级参考文献207

  • 1田光见,赵荣椿.步态识别综述[J].计算机应用研究,2005,22(5):20-22. 被引量:16
  • 2叶波,文玉梅.基于步态的人身份识别技术综述[J].计算机应用,2005,25(11):2577-2580. 被引量:8
  • 3[1]Glossary of biometrics terms [R].1998,Association for biometrics(AfB),Intemational Computer Security Association (ICSA).
  • 4[2]R Chellappa,et al.Humnan and machine recognition of face:a survey[J].Proc.IEEE,1995,83 (5):705-740.
  • 5[3]R Brunelli,T Poggio.Face recognition:features versus templates [J].IEEE Trans.PAMI,1993,15(10):1042-1052.
  • 6[4]D L Swets,J Weng.Using discriminant eigenfeatures for image retrieval[J].IEEE Trans.PAMI,1996,18 (8):831-836.
  • 7[5]B Moghaddam,et al.Probabilistic visual recognition for object recognition [J].IEEE Trans.PAMI,1997,19(7) :696-710.
  • 8[6]S Y Lee,et al.Recognition of humman front faces using knowledgebased feature extraction and neunofuzzy algorithm [J].Pattern Recognition,1996,29(11):1863-1876.
  • 9[7]S Lawtonce,et al.Face recognition:a convolutional neural-network approach [J].IEEE Trans.NN,1997,8(1):98-113.
  • 10[9]J Zhang,et al.Face recognition:eigenface,elastic matching,and neural nets [J].Proc.IEEE,1997,85(9):1422-1435.

共引文献313

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部