期刊文献+

Wolfe线搜索下的修正FR谱共轭梯度法 被引量:6

A modified FR spectral conjugate gradient method with Wolfe line search
原文传递
导出
摘要 对无约束优化问题的谱共轭共轭梯度法,提出修正的FR共轭参数和谱参数,使每次迭代均自行产生下降方向,且这一下降性不依赖于任何线搜索条件。在常规假设下,证明了采用Wolfe线搜索的新算法具有全局收敛性。相关的数值实验结果表明该谱共轭梯度法是有效的。 A modified FR spectral conjugate gradient method is proposed for unconstrained optimization. This method can automatically generate descent direction at every iterations depending on no any line search. Under the conventional assumption, it is proved that the corresponding method with Wolfe line search is globally convergent. The numerical results show that the spectral conjugate gradient method is effective.
作者 林穗华 LIN Sui-hua(Department of Mathematics and Computer Science, Guangxi Normal University for Nationalities, Chongzuo 532200, Guangxi, Chin)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2017年第4期6-12,共7页 Journal of Shandong University(Natural Science)
基金 广西高校科研重点项目(ZD2014143) 广西重点培育学科(应用数学)建设项目(桂教科研[2013]16) 广西民族师范学院科研项目(2013RCGG002)
关键词 无约束优化 谱共轭梯度法 WOLFE线搜索 全局收敛 unconstrained optimization spectral conjugate gradient method Wolfe line search global convergence
  • 相关文献

参考文献6

二级参考文献82

  • 1WANGChangyu,DUShouqiang,CHENYuanyuan.GLOBAL CONVERGENCE PROPERTIES OF THREE-TERM CONJUGATE GRADIENT METHOD WITH NEW-TYPE LINE SEARCH[J].Journal of Systems Science & Complexity,2004,17(3):412-420. 被引量:13
  • 2戴志锋,陈兰平.一种混合的HS-DY共轭梯度法[J].计算数学,2005,27(4):429-436. 被引量:33
  • 3Ya-xiang Yuan.A NEW STEPSIZE FOR THE STEEPEST DESCENT METHOD[J].Journal of Computational Mathematics,2006,24(2):149-156. 被引量:16
  • 4戴或红,袁亚湘.非线性共轭梯度法[M].上海:上海科学技术出版社,2000.
  • 5DAI Y H, YUAN Y X. A nonlinear conjugate gradient method with a strong global convergence property[ J ]. SIAM Journal on Optimization, 1999, 10: 177-182.
  • 6Hager William W, ZHANG Hongchao. A new conjugate gradient method with guaranteed descent and an efficient line search[J].SIAM Journal on Optimization, 2005, 16(1) : 170-192.
  • 7LI Donghui, Fukushima Masao. A modified BFGS method and its global convergence in nonconvex minimization[J].Journal of Computational and Applied Mathematics, 2001, 129(1-2) :15-35.
  • 8ZOUTENDIJK G. Nonlinear programming, computational methods[ M ]. Amsterdam: North-Holland, 1970, 2: 37-86.
  • 9BONGARTZ I, CONN A R, GOULD N I M, et al. CUTE: constrained and unconstrained testing environments [ J ]. ACM Trans Math Software, 1995, 21 : 123-160.
  • 10ZHANGA Li. Two modified Dai-Yuan nonlinear conjugate gradient methods[J].Numerical Algorithms, 2009, 50( 1 ) : 1-16.

共引文献71

同被引文献35

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部