期刊文献+

基于STM32的目标提取处理系统

The Image Target Extraction Processing System Based on STM32
下载PDF
导出
摘要 本文探索了一种监控图像跟踪系统,该系统以STM32微处理器为控制核心,将广角摄像头采集的图像送至LCD显示,并分析获取图像的数据,针对常用的直接帧间差分法存在的误差大,运算量大,导致内存问题,影响运算速度等问题,提出了一种图像目标提取处理算法,准确快速计算出目标物体的位置坐标,从而控制云台移动,保证目标处于摄像头视野的中央,解决了在图像处理中误差大、运算速度慢、系统内存不足等问题,以低成本低功耗实现了视频目标的提取跟踪处理. In this paper, a monitoring image tracking system is explored. The system takes the 5ilVl3Z microprocessor as the control core, sends the image captured by the wide-angle camera to the LCD dis- play, and analyzes the data of the acquired images. For the common direct inter-frame difference meth- od, because of a large amount of error, large amount of computation, resulting in insufficient memory, the impact of computing speed and other deficiencies, an image object extraction algorithm is put for- ward to accurately and quickly calculate the coordinates of the target object position. It solves the prob- lems of large error, slow operation and insufficient system memory in image processing, and realizes the video object extraction and tracking processing with low cost and low power consumption tocontrol the PTZ mobile to ensure that the target is in the center of the camera field of vision.
作者 刘天霖 杨博宇 潘广贞 LIU Tianlin YANG Boyu PAN Guangzhen(School of Software, North University of China, Taiyuan 030051, China School of Information and Communication Engineering, North University of China, Taiyuan 030051, Chin)
出处 《测试技术学报》 2017年第2期144-147,共4页 Journal of Test and Measurement Technology
关键词 STM32 监控系统 目标提取 互相关性 STM32 monitoring system target extraction cross correlation
  • 相关文献

参考文献7

二级参考文献245

  • 1金永镐,崔荣一,金小峰.基于交叉熵极小化的图像边缘检测算法[J].吉林大学学报(信息科学版),2006,24(6):656-660. 被引量:2
  • 2王素玉,沈兰荪.智能视觉监控技术研究进展[J].中国图象图形学报,2007,12(9):1505-1514. 被引量:82
  • 3STMicroelectronics.RM0090 Reference manualSTM32F405xx,STM32F407xx,STMF415xx and STM32F417xx advancedARM-based32-bitMCUs[EB/OL],[2012-05-29].http://www.st.com.
  • 4Adam Dunkels.DesignandImplementationoftheLwIPTCP/IPStack [M]. Swiss:SwedishInstituteofComputerScience,2001.
  • 5Bouwmans T, El Baf F, Vachon B. Background modeling using mixture of Gaussians for foreground detection: A survey. Recent Patents on Computer Science, 2008, 1(3) 219-237.
  • 6Wojek C, Dollar P, Schiele B, Perona P. Pedestrian detection: An evaluation o{ the state o{ the art. IEEE Pattern Analysis and Machine Intelligence, 2012, 34(4): 743-761.
  • 7Yilmaz A, Javed O, Shah M. Object trackingt A survey. ACM Computing Surveys (CSUR), 2006, 38(4) 1-29.
  • 8Wang X. Intelligent multi-camera video surveillance: A review. Pattern Recognition Letters, 2012, 34 (1) : 3-19.
  • 9Wu Y, Lira J, Yang M H. Online object tracking: A bench- mark//Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013 2411-2418.
  • 10Andreopoulos A, Tsotsos J K. 50 years of object recognition: Directions forward. Computer Vision and Image Understanding, 2013, 117(8) 827-891.

共引文献444

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部