期刊文献+

基于MIC集群平台的GMRES算法并行加速 被引量:2

Speedup of GMRES Based on MIC Heterogeneous Cluster Platform
下载PDF
导出
摘要 广义极小残量法(GMRES)是最常用的求解非对称大规模稀疏线性方程组的方法之一,其收敛速度快且稳定性良好。Intel Xeon Phi众核协处理器(MIC)具有计算能力强、易编程、易移植等特点。采用MPI+OpenMP+offload混合编程模型将GMRES算法移植到MIC集群平台上。采用进程间集合通信异步隐藏、数据传输优化、向量化以及线程亲和性优化等多种手段,大幅提升了GMRES算法的求解效率。最后将并行算法应用到"局部径向基函数求解高维偏微分方程"问题的求解中。测试表明,CPU节点集群上开启32个进程,并行效率高达71.74%,4块MIC卡的最高加速性能可达单颗CPU的7倍。 Generalized minimal residual method(GMRES)is the most commonly used method for solving asymmetric large-scale linear algebraic equations,and it has fast convergence and stable property.Intel many integrated co-processors(MIC)has strong computing power and it can program easily.In this paper,MPI+OpenMP+offload hybrid programming paradigm was used to port GMRES algorithm to the MIC heterogeneous cluster platform.The perfor-mance of GMRES parallel algorithm was greatly improved by using kinds of optimization methods,such as hiding collective communications using asynchronous execution model,vectorization optimization,data transfer optimization,extensibility of MIC thread optimization,etc.Finally,GMRES parallel algorithm was used to improve the perfomance of solving high dimensional PDEs by the localized radical basis functions(RBFs)collocation methods.Results from tests indicate that the parallel efficiency can be up to 71.74% when using 32 processes in cluster,and the maximum speedup ratio of 4MICs to 1CPU can be up to 7.
出处 《计算机科学》 CSCD 北大核心 2017年第4期197-201,240,共6页 Computer Science
关键词 广义极小残量法 MIC MPI 大规模线性方程组 GMRES MIC MPI Large-scale linear algebraic equations
  • 相关文献

参考文献2

二级参考文献15

  • 1吴恩华,柳有权.基于图形处理器(GPU)的通用计算[J].计算机辅助设计与图形学学报,2004,16(5):601-612. 被引量:227
  • 2安恒斌,白中治.NGLM:一类全局收敛的Newton-GMRES方法[J].计算数学,2005,27(2):151-174. 被引量:14
  • 3白中治,安恒斌.关于Newton-GMRES方法的有效变型与全局收敛性研究[J].数值计算与计算机应用,2005,26(4):291-300. 被引量:11
  • 4全忠,向淑晃.基于GMRES的多项式预处理广义极小残差法[J].计算数学,2006,28(4):365-376. 被引量:14
  • 5Saad Y, Schultz M H. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3): 856-869.
  • 6Saad Y. Iterative methods for sparse linear systems [M]. 2nd ed. Philadelphia: SIAM, 2003.
  • 7Habu M, Nodera T. GMRES(m) algorithm with changing the restart cycle adaptively [C] //Proceedings of Algoritmy Conference on Scientific Computing. Heidelberg: Springer, 2000:254-263.
  • 8Wu E H, Liu Y Q. Emerging technology about GPGPU [C] //Proceedings of IEEE Asia Pacific Conference on Circuits and Systems. Los Alamitos: IEEE Computer Society Press, 2008:618-622.
  • 9NVIDIA CUDA C programming guide. Version 3. 1 [M]. San Jose: NVIDIA, 2010.
  • 10Wang M L, Klie H, Parashar M, etal. Solving sparse linear systems on NVIDIA tesla GPUs [M] //Lecture Notes in Computer Science. Heidelberg: Springer, 2009, 5544:864- 873.

共引文献22

同被引文献24

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部