期刊文献+

一种中文事件事实性识别方法

Approach to Identify Chinese Event Factuality
下载PDF
导出
摘要 事件事实性指出了事件发生与否的确定性程度,是自然语言理解的基础。在研究过程中,针对中文事件的事实性识别问题,提出了一种基于特征工程的有效识别方法。该方法选取事件的事实性相关信息进行特征的处理和转化。同时,考虑到部分特征与事件事实性之间的联系,依据规则进行特征融合。实验证明,相比基于规则的事件事实性识别方法,该方法有着更好的识别效果。 Event factuality refers to the level of event factual information expressed by event narrator and it is the foun- dation of natural language understanding. During the research, we focused on identifying Chinese event factuality and proposed an effective identification approach based on features. It extracts and transforms features from the factual re- lated information. Meanwhile, considering the relationship between parts of features and event factuality, it makes a fu- sion of these features according to rules. Experimental results manifest that our approach achieves a higher performance than the rule-based approach for the task of event factuality identification.
出处 《计算机科学》 CSCD 北大核心 2017年第5期241-244,256,共5页 Computer Science
基金 国家自然科学基金(61472265) 国家自然科学基金重点项目(61331011) 江苏省前瞻性联合研究项目(BY2014059-08) 软件新技术与产业化协同创新中心部分资助
关键词 事件事实性 识别方法 特征的转化和融合 Event factuality, Identification approach, Feature transformation and fusion
  • 相关文献

参考文献1

二级参考文献12

  • 1孙茂松,肖明,邹嘉彦.基于无指导学习策略的无词表条件下的汉语自动分词[J].计算机学报,2004,27(6):736-742. 被引量:37
  • 2黄萱菁,吴立德,王文欣,叶丹瑾.基于机器学习的无需人工编制词典的切词系统[J].模式识别与人工智能,1996,9(4):297-303. 被引量:24
  • 3Sproat, Richard, Shih C. A statistical method for finding word boundaries in Chinese text [J]. Computer Processing of Chinese and Oriental Languages, 1990, 4: 336-51.
  • 4Maosong S, Dayang S, Tsou B K. Chinese word seg mentation without using lexicon and hand-crafted train- ing data [C]//Proceedings of the 17th International Conference on Computational linguistics-Volume 2, F, 1998.
  • 5Pitman J, Yor M. The two-parameter Poisson- Dirichlet distribution derived from a stable subordina- tor [J]. The Annals of Probability, 1997, 25(2) : 855-900.
  • 6Goldwater S, Griffiths T L, Johnson M. Contextual dependencies in unsupervised word segmentation[C]// Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meet- ing of the Association for Computational Linguistics, F, 2006.
  • 7Goldwater S, Griffiths T L, Johnson M. A Bayesian framework for word segmentation: Exploring the effects of context [J]. Cognition, 2009, 112(1): 21-54.
  • 8TEH Y W. A hierarchical Bayesian language model based on Pitman-Yor processes [C]//Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Asso ciation for Computational Linguistics, F, 2006.
  • 9Wood F, Teh Y W. A hierarchical, hierarchical Pit- man Yor process language model[C]//Proceedings of the ICML 2008 Workshop on Nonparametric Bayes, F, 2008.
  • 10Xu T, Zhang Z, Yu P S, et al. Evolutionary cluste- ring by hierarchical dirichlet process with hidden markov state[C]//Proceedings of the Data Mining, ICDM'08 Eighth IEEE International Conference on, F, 2008. IEEE.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部