摘要
针对具有多领航者的二阶网络化系统群集运动问题,提出了一种有限时间收敛的包容控制算法。在此基础上,运用现代控制理论、代数图论和矩阵论等分析工具对所提出的控制算法进行理论分析,得到了当通信拓扑为动态联合连通时,二阶网络化系统在有限时间内实现群集运动的收敛条件。通过此包容控制算法,使得系统在静态拓扑和联合连通条件下均在有限时间内收敛到目标区域内。最后,应用系统仿真验证了所得结论的正确性。
In this paper, we propose a containment control algorithm with finite-time convergence for a second-order networked system flocking with multiple leaders. By applying modern control theory, matrix theory, and algebraic graph theory, we theoretically analyzed our proposed control algorithm; by doing so, we identified the convergence conditions required for a second-order networked system to realize flocking within finite time when the communica- tion topology applies a dynamic joint connection. Through our containment control algorithm, the networked systems converge to object regions in finite time given the circumstances of static and jointly connected topologies. Finally, we verified the effectiveness of our proposed system via simulation examples.
出处
《智能系统学报》
CSCD
北大核心
2017年第2期188-195,共8页
CAAI Transactions on Intelligent Systems
基金
国家自然科学基金项目(61273152)
国家自然科学基金项目(61673200)
关键词
多领航者
群集运动
有限时间
联合连通
包容控制
multiple leaders
flocking
finite time
jointly-connected
containment control