期刊文献+

视频帧间分组及超分辨率重建的自适应性研究

Research on the adaptability of video frame grouping and super-resolution reconstruction
下载PDF
导出
摘要 由于视频场景变化较快、配准误差、噪声、低分辨率图像数量不足等原因,会使传统基于压缩感知的采用视频帧固定分组形式的视频编解码器的重构效果较差,同时也使超分辨率重建出现病态问题。为解决这些问题,文章提出一种基于压缩感知的自适应帧图像分组的视频编解码器,同时又在超分辨率重建算法中提出了L曲线的自适应时空正则化系数计算方法,可以自适应地计算正规化系数。由实验结果表明,该算法能够很好地解决上述问题从而重构出视觉效果良好的视频帧图像。 Due to the rapid changes in the video scene,registration error,n oise, low-resolution images and other re ason s ,the reconstructedvideo frame effect of the traditional video codec based on compressed sensing using a fixed grouping mode for the video frame is poor ,and alsomake the super-resolution reconstruction appear ill-posed problems. In order to solve the above-mentioned problems,in this p a p e r ,an adaptiveframe image grouping video codec based on compressed sensing is proposed. At the same time, an the super-resolution reconstruction algoritlim which can calculate the appropriate space-time regularization coefficient adaptively. The experimen-tal results show that the improved algoritlim can be used to reconstruct the ultra-liigh resolution images with good visual quality.
作者 杨海丽 黄洪琼 Yang Haili Huang Hongqiong(College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China)
出处 《微型机与应用》 2017年第9期49-52,共4页 Microcomputer & Its Applications
基金 国家自然科学基金(61673260)
关键词 压缩感知 视频帧图像自适应分组 超分辨率重建 自适应时空正则化 L曲线 compressed sensing adaptive frame image grouping super-resolution reconstruction adaptive spatial-temporal regularization L-u
  • 相关文献

参考文献1

二级参考文献12

  • 1焦斌亮,闫旭辉.基于TDI-CCD成像像移分析及图像复原[J].宇航学报,2008,29(2):675-678. 被引量:11
  • 2苗晴,唐斌兵,周海银.空域中基于正则化技术的有效图像复原算法[J].系统工程,2005,23(11):91-94. 被引量:6
  • 3THIERRY R, LUCIEN W. Fusion of high spatial and spectral resolution images: the ARSIS concept and its implementation[J].Photogrammetric Engineering and Remote Sensing,2000,66(1):49-61.
  • 4林立于,张友炎,孙涛,等.Contourlet变换--影像处理应用[M].北京:科学出版社,2008:109.
  • 5GEMAN D, YANG Cheng-da. Nonlinear image recovery with half-quadratic regularization[J].IEEE Trans on Image Processing,1995,4(7):932-946.
  • 6TIKHONOV A N. Regularization of incorrectly posed problems[J].Soviet Math Dokl,1963,4(6):1624-1627.
  • 7PERRY S W, GUAN L.Weight assignment for adaptive image restoration by neural networks[J].IEEE Trans on Neural Networks,2000,11(1):156-170.
  • 8WU Xian-jin,WANG Run-sheng,WANG Cheng. Regularized image restoration based on adaptively selecting parameter and operator[C]//Proc of the 17th IEEE International Conference on Pattern Recognition.2004:662-665.
  • 9PARK S C, PARK M K, KANG M G. Super-resolution image reconstruction:a technical overview[J].IEEE Signal Processing Magazine,2003,20(3):21-36.
  • 10SYLVAIN P, PIERRE K, JACK T, et al. A gentle introduction to Bilateral filtering and its applications[C]//Proc of ACM SIGGRAPH. 2007.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部