摘要
由于视频场景变化较快、配准误差、噪声、低分辨率图像数量不足等原因,会使传统基于压缩感知的采用视频帧固定分组形式的视频编解码器的重构效果较差,同时也使超分辨率重建出现病态问题。为解决这些问题,文章提出一种基于压缩感知的自适应帧图像分组的视频编解码器,同时又在超分辨率重建算法中提出了L曲线的自适应时空正则化系数计算方法,可以自适应地计算正规化系数。由实验结果表明,该算法能够很好地解决上述问题从而重构出视觉效果良好的视频帧图像。
Due to the rapid changes in the video scene,registration error,n oise, low-resolution images and other re ason s ,the reconstructedvideo frame effect of the traditional video codec based on compressed sensing using a fixed grouping mode for the video frame is poor ,and alsomake the super-resolution reconstruction appear ill-posed problems. In order to solve the above-mentioned problems,in this p a p e r ,an adaptiveframe image grouping video codec based on compressed sensing is proposed. At the same time, an the super-resolution reconstruction algoritlim which can calculate the appropriate space-time regularization coefficient adaptively. The experimen-tal results show that the improved algoritlim can be used to reconstruct the ultra-liigh resolution images with good visual quality.
作者
杨海丽
黄洪琼
Yang Haili Huang Hongqiong(College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China)
出处
《微型机与应用》
2017年第9期49-52,共4页
Microcomputer & Its Applications
基金
国家自然科学基金(61673260)
关键词
压缩感知
视频帧图像自适应分组
超分辨率重建
自适应时空正则化
L曲线
compressed sensing
adaptive frame image grouping
super-resolution reconstruction
adaptive spatial-temporal regularization
L-u