摘要
Biot饱和多孔介质波动行为的数值模拟在众多工程领域中具有重要的意义和作用,由于固相与液相耦合方程难以解耦,使该问题的数值模拟难度较大。针对饱和多孔介质中部分耦合u-p及全耦合u-p-U方程形式的特征,推导了相应动力耦合控制方程的有限元弱形式,并引入不同耦合形式的饱和多孔介质时域黏性边界,综合利用Comsol Multiphysics提供的偏微分方程应用模式进行二次开发求解,通过一维饱和多孔介质动力响应的解析解和数值解验证了模型求解技术的合理性和可行性,基于u-p-U耦合形式探讨了冲击荷载作用下干砂饱和砂地基动力固结中应力波传播特性。计算结果表明慢纵波对动力固结的影响比较显著,合理的冲击荷载持续时间有利于固结效果的改善。
Numerical simulation of dynamic behavior of saturated porous media is of great importance in many engineering problems. As pore fluid and solid skeleton interaction is hard to be decoupled, there are a lot of difficulties in numerical simulation. Aiming at characteristics of the partly coupled dynamic field equation u-p formulation and the fully coupled dynamic field equation u-p-U formulation, the FE weak forms of the corresponding dynamic coupling control equations were derived. These FE weak forms were successfully implemented in the finite element software Comsol Multiphysics and the time domain viscous boundarys with different dynamic coupling forms were introduced in simulating unbounded saturated porous media domain. The reasonability and feassibility of the model solving technique were verified by using the analytical solution and numerical one to dynamic response of one-dimensional saturated porous meida. Finally, based on u-p-U coapled form, the propagating features of stress waves in the dry sandsaturated sand foundation dynamic consolidation under impacting loads were investigated. The computation results showed that the slow longitudinal were has an obvious effect on the dynamic consolidation; the reasonable time duration of impacting load is beneficial to the improvement of consolidation effects. © 2017, Editorial Office of Journal of Vibration and Shock. All right reserved.
出处
《振动与冲击》
EI
CSCD
北大核心
2017年第9期146-152,213,共8页
Journal of Vibration and Shock
基金
国家自然基金项目(51378441
51578467)