期刊文献+

基于图像块的EM自适应图像去噪算法

Baesd-patch Daptive Image Denoising with EM Algorithm
下载PDF
导出
摘要 为了提高基于图像块先验的自然图像去噪效果,有效的去除图像中的噪声,本文利用图像块的统计特性提出一种最大期望(Expectation Maximization,简称EM)自适应的学习过程,学习图像块的先验知识,通过映射某个通用先验到指定图像生成特定的先验。提出的方法相较于标准EM算法需要较少的训练数据,并且在没有无噪图像数据库时可以应用到预滤波的图像中。实验结果表明,该算法能够实现较好的去噪效果,且优于现有的一些图像去噪算法。 In order to improve the denoising effect of natural image based-patch prior and effectively remove the noise in the image,this paper proposes Expectation Maximization adaptation learning process by using the statistical characteristics of image blocks to learn image block priors,which generates specific prior by mapping a generic prior to the specified image. Compared with the standard EM algorithm,the proposed method needs less training data,and can be applied to the pre-filtered image in the absence of clean databases. The experimental results show that the proposed algorithm is superior to the existing image denoising algorithms.
作者 姚磊
出处 《科技广场》 2017年第2期14-17,共4页 Science Mosaic
关键词 图像去噪 图像块 最大期望自适应 先验知识 预滤波图像 Image Denoising Image patches EM Adaptation Priors Pre-filtered Image
  • 相关文献

参考文献1

二级参考文献23

  • 1Dong Wei-sheng, Zhang Lei, Shi Guang-ming, et al. Nonlocally centralized sparse representation for image restoration [J]. Image Processing, IEEE Transactions on, 2013, 22 (4): 1620-1630.
  • 2YANG Meng, ZhANG Lei, FENG Xiang-chu, et al. Fisher discrimination dictionary learning for sparse representation [C] //Computer Vision (ICCV), 2011 IEEE International Conference on. IEEE, 2011: 543-550.
  • 3Olshausen B A, Field D J. Emergency of simple-cell receptive field properties by learning a sparse code for natural images [J]. Nature, 1996, 381 (6583): 607-609.
  • 4Engan K, Aase S O, Hakon Husoy J. Method of optimal directions for frame design [C] //Acoustics, Speech and Signal Processing, 1999. Proceedings. 1999 IEEE International Conference on. IEEE, 1999, 5: 2443-2446.
  • 5Aharon M, Elad M, Bruckstein A M. The K-SVD: an algorithm for designing of over complete dictionaries for sparse representation [J]. IEEE Transactions on Signal Processing, 2006, 54 (11): 4311-4322.
  • 6Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse over complete representations in the presence of noise [J]. Information Theory, IEEE Transactions on, 2006, 52 (1): 6-18.
  • 7MaUat S G, Zhang Z. Matching pursuits with time-frequency dictionaries [J]. Signal Processing, IEEE Transactions on, 1993, 41 (12) : 3397-3415.
  • 8Tropp J. Greed is good: Algorithmic results for sparse approximation [J]. Information Theory, IEEE Transactions on, 2004, 50 (10) : 2231-2242.
  • 9Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit [J]. SIAM Journal on Scientific Computing, 1998, 20 ( 1 ) : 33-61.
  • 10Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limited data using FOCUSS.. A re-weighted minimum norm algorithm [J]. Signal Processing, IEEE Transactions on, 1997, 45 (3): 600-616.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部