期刊文献+

矩形与曲形坝体溃坝瞬时的水位研究

Research on Dam-Break Water Level for Rrectangular and Curved Dam
下载PDF
导出
摘要 溃坝是一种自然灾害,且时常发生,溃坝时大量的水从缺口溢出,会对周围造成很大的影响。坝体的形状是引起溃坝的主要影响因素之一,当来流作用在坝体上之后,由于坝体形状的不同,其溃坝之后所导致的流体冲击距离与力度也不一样。为此,利用VOF模型,用界面跟踪法求解相连续方程,对矩形与曲形坝体溃坝问题进行数值模拟,并对两种形状坝体溃坝后的水位图进行分析,通过数值计算得到了各个时刻溃坝运动界面的变化和相应的速度分布。最后得出结论,矩形坝体相对于曲线形坝体较好。 Dam break is a kind of frequent natural disaster, and there is a large amount of water overflows from the gap when the darn breaks, and it will have a great impact on the surrounding. The shape is one of the main influencing factors of dam break, when the incoming flow acts on the dam body, due to the different shape of the dam, the damper caused by the impact of the distance and the intensity of the fluid is not the same. This article used the VOF model in solving continuous equations by interface tracking method, numerical simulation of dam break problem for rectangular dam and curved dam. The water level maps of two types of dams were analyzed, and simulation results focused on the evolution of the moving interface and the contour of the velocity of the dam break at different moment. Finally, it is concluded that the rectangular dam is better than the curved dam.
机构地区 安徽工程大学
出处 《重庆理工大学学报(自然科学)》 CAS 2017年第4期76-81,共6页 Journal of Chongqing University of Technology:Natural Science
基金 安徽省自然科学基金资助项目(1508085QE100)
关键词 形状 溃坝 VOF模型 shape dam break VOF model
  • 相关文献

参考文献1

二级参考文献12

  • 1段庆林,李锡夔.不可压缩N-S方程的稳定分步算法及耦合离散[J].力学学报,2007,39(6):749-759. 被引量:2
  • 2HUGHES T J R, FRANCA L P, BALESTRA M. A new finite element formulation for computational fluid dyna- mics: V. Circumventing the Babuska-Brezzi Condition: A stable Petrov-Galerkin formulation of the Stokes pro- blem accommodating equal-order interpolations[J]. Comput. Methods Appl. Mech. Engrg., 1986(59): 85- 99.
  • 3CODINA R, BLASCO J. A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation[J]. Comput Methods Appl. Mech. Engrg., 1997(143): 373-391.
  • 4ONATE E. A stabilized finite element method for in- compressible viscous flows using a finite increment cal- culus formulation[J]. Comput Methods Appl. Mech. Engrg., 2000(182): 355-370.
  • 5ONATE E. Derivation of stabilized equations for adve- etive-diffusive transport and fluid flow problems[J]. Comput. Methods Appl. Mech. Engrg., 1998(151): 233- 267.
  • 6ONATE E, GARCIA J, IDELSOHN S. Computation of the stabilization parameter for the finite element solu- tion of advective-diffusive problems[J]. International Journal of Numerical Methods Fluids, 1997(25): 1385- 1407.
  • 7ONATE E, MANZAN M. A general procedure for de- riving stabilized space-time finite element methods for advective-diffusive problems[J]. International Journal of Numerical Methods Fluids, 1999(31): 203-221.
  • 8ERTURK E, CORKE TC, GOKCOL C. Numerical so- lutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers[J]. International Journal of Numerical Methods Fluids, 2005(48): 747-774.
  • 9ROSHKO A. On the development of turbulent wakes from vortex streets[R]. NACA report 1191, USA, 1954.
  • 10CATALANO P, WANG M, IACCARINO G, et. al. Nu- merical simulation of the flow around a circular cyli- nder at high Reynolds numbers[J]. International Journal of Heat & Fluid Flow, 2003(24): 463-469.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部