期刊文献+

一种改进的图像低维表示方法

An Improved Method of Low-Dimensional Representation of Images
下载PDF
导出
摘要 目的解决当前方法需要对图像中的相应点手动标记界标,且局限于特定对象或形状变形的问题。方法提出一种可以同时实现图像颜色、外观和形态的图像低维表示算法。结果该算法通过将形态和外观的流形约束到低维子空间上,进一步降低了流形学习的采样复杂性。结论文中方法的性能远优于目前典型的稳健型光流算法和SIFT流算法。在图像编辑和关节学习关任务中取得了令人满意的定性结果。 The work aims to solve the problem that the existing solutions either require manually specified landmarks for corresponding points in the images, or are restricted to specific objects or shape deformations.A low-dimensional representation of images for simultaneously recovering color, appearance and shape was proposed.The proposed algorithm further reduced sample complexity of manifold learning as the manifolds of shape and appearance were restricted to low-dimensional subspaces.The proposed method significantly outperformed the current typical methods of robust optical flow and SIFT flow.Our qualitative results in some related tasks such as image deformation and joint learning are encouraging.
作者 曾步衢 ZENG Bu-qu(Huanghuai University, Zhumadian 463000, Chin)
机构地区 黄淮学院
出处 《包装工程》 CAS 北大核心 2017年第9期230-235,共6页 Packaging Engineering
基金 河南省教育厅重点科技攻关项目(13A520786)
关键词 图像低维表示 L2范数 稳健型光流算法 SIFT流算法 low-dimensional representation of images L2 norm robust optical flow SIFT flow
  • 相关文献

参考文献2

二级参考文献23

  • 1孙君顶,丁振国,周利华.基于图像信息熵与空间分布熵的彩色图像检索方法[J].红外与毫米波学报,2005,24(2):135-139. 被引量:21
  • 2邢强,袁保宗,唐晓芳.一种基于加权色彩直方图的快速图像检索方法[J].计算机研究与发展,2005,42(11):1903-1910. 被引量:12
  • 3R C Veltkamp, M Tanase. Content-based image retrieval systems: A survey [R]. Utretch University, Tech Rep: UUCS-2000-34, 2002.
  • 4Ritendra Datta, Jia Li, James Z Wang. Content-based image retrieval-Approaches and trends of the new age [C]. The 7th Int'l Workshop on Multimedia Information Retrieval, in Conjunction with ACM Int'l Conf on Multimedia, Singapore, 2005.
  • 5J Eauqueur, N Boujemaa. Region-based image retrieval: Fast coarse segmentation and fine color description [J]. Journal of Vision Languages and Computing (JVLC), Special Issue on Vision Information System, 2004, 15(1) : 69- 95.
  • 6Y Deng, B S Manjunath, C Kenney, et al. An efficient color representation for image retrieval [J]. IEEE Trans on Image Processing, 2001, 10(1): 140-147.
  • 7S Jeong, C S Won, R M Gray. Image retrieval using color histograms generated by Gauss mixture vector quantization [J]. Computer Vision and Image Understanding, 2004, 9 (1-3) : 44 -46.
  • 8Suryani Lim, Guojun Lu. Spatial statistics for content based image retrieval [C]. The Int'l Conf on Information Teehnology: Computers and Communieations, Clayton, Australia, 2003.
  • 9Tan Kian-Lee, Ooi Beng Chin, Yee Chia Yeow. An evaluation of color-spatial retrieval technique for large image database [J]. Multimedia Tools and Applications, 2002, 14(1) : 55-78.
  • 10Wright J,Yang A Y,Ma Yi,et al.Robust face recognition via sparse fepresentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227.

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部