期刊文献+

Alpha稳态噪声下基于Meridian范数的全变分图像去噪算法 被引量:1

A Total Variational Approach Based on Meridian Norm for Restoring Noisy Images with Alpha-stable Noise
下载PDF
导出
摘要 在实际应用中,噪声不可避免,因此,图像去噪一直是图像处理领域研究的重点,并且近年来受到越来越多的研究者的青睐。该文首先基于Meridian分布和全变分(Total Variational,TV)的统计特性,提出一种全变分模型来复原alpha稳态噪声环境下的含噪声图像。此外,为了保证模型解的唯一性,对提出的全变分模型添加了一个二次惩罚项,得到一个严格凸的全变分模型,然后,使用原始-对偶算法对提出的全变分模型进行求解,并证明了该算法的收敛性。最后,进行了仿真实验,并对实验结果进行了分析,实验结果验证了提出模型的可行性与有效性。 In actual applications, noises may inevitably exist, and thus to study the denoising method for images is great significant task in image processing filed that attracts much attention in recent years. In this paper, based on the statistical property of Meridian distributed and the Total Variational (TV), a total variational method is proposed for restoring images degraded by alpha-stable noise. Besides, in order to obtain a strictly convex model, a quadratic penalty term is added, which guarantees the uniqueness of the solution. For solving the novel convex variational model, a primal-dual algorithm is employed to solve the above model, and the convergence of the algorithm is proved. The experimental results demonstrate that the feasibility and effectiveness of the proposed model for the noisy images with alpha-stable noise.
出处 《电子与信息学报》 EI CSCD 北大核心 2017年第5期1109-1115,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61501251 61271335 61271240) 江苏省自然科学基金项目(BK20140891) 南京邮电大学引进人才科研启动基金资助项目(NY214191)~~
关键词 图像处理 Meridian范数 Alpha稳态噪声 原始-对偶算法 全变分 Image processing Meridian norm Alpha-stable noise Primal-dual algorithm Total Variational (TV)
  • 相关文献

参考文献1

二级参考文献15

  • 1Fadili M, Zhang Bo, and Starck Jean-Luc. Wavelets, ridgelets and curvelets for poisson noise removal[J]. IEEE Transactions on Image Processing, 2008, 17(7): 1093-1108.
  • 2Zhou W F and Li Q G. Poisson noise removal scheme based on fourth-order PDE by alternating minimization algorithm[J]. Abstract and Appli Analysis, 2012, (Special Issue): 1-14.
  • 3Aubert G and Aujol J F. A variational approach to removing mnltiplicative noise[J]. SIAM Journal of Applied Mathematics, 2008, 68(4): 925-946.
  • 4Jin Zheng-meng and Yang Xiao-ping. A variational model to remove the multiplicative noise in ultrasound images[J]. Journal of Mathematical Imaging and Vision, 2011, 39(1): 62-74.
  • 5Rudin L I, Osher S, and Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica 19, 1992, 60(1-4): 259-268.
  • 6Le T, Chartrand R, and Asaki T J. A variational approach to recontructing images corrupted by Poisson noise[J]. Journal of Mathematical Imaging and Vision, 2007, 27(3): 257-263.
  • 7Kornprobst P, Deriche R., and Aubert G. Image sequence analysis via partial differential equations[J]. Journal of Mathematical Imaging and Vision, 1999, 11(1): 5-26.
  • 8Gabay D and Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite-element approximations[J]. Computers and Mathematics with Applications, 1976, 2(1): 17-40.
  • 9Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3(1): 1-122.
  • 10Chan R H, Yang J F, and Yuan X M. Alternating direction method for image inpalnting in wavelet domain[J]. SIAM Journal on Imaging Sciences, 2011, 4(3): 807-826.

共引文献2

同被引文献11

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部