期刊文献+

Fe_3O_4/石墨烯复合材料的制备及其电化学性能研究 被引量:2

Synthesis and their electrochemical performance of ferriferrous dioxide/graphene composite materials
下载PDF
导出
摘要 以FeCl_3·6H_2O和FeCl_2·4H_2O为铁源,以Na OH溶液为沉淀剂,选择共沉淀法制备Fe_3O_4∕石墨烯复合物。以Fe^(2+)和Fe^(3+)的浓度作为变量制得5种不同比例的Fe_3O_4/石墨烯纳米复合材料,然后将所得复合材料压制成电极片,组装成超级电容器后进行循环伏安(CV)、恒电流充放电(GCD)、交流阻抗(EIS)测试,探究Fe_3O_4与石墨烯的含量比对复合材料电化学性能的影响。结果表明,当FeCl_3·4H_2O和FeCl_2·4H_2O用量分别为0.456 g和0.665 g,氧化石墨烯用量为150 mg时,所制备复合材料的电化学性能最佳,比电容可达510 F/g。 FeCl3·6H2O and FeCl2·4H2O as ferrics salt and concentrated Na OH solution as precipitating agent,ferriferrous dioxide/graphene composite materials were synthesized by using co-precipitation method through controlling concentration of Fe2+and Fe3+. Their morphologies and phase structures were characterized by X-ray powder diffraction. The composite materials were prepared into electrode sheets,and the electrode sheets were assembled into a symmetric supercapacitor. Then constant-current charge and discharge( GCD),cyclic voltammetry( CV) and AC impedance( EIS) were used to test their electrochemical properties under the two-electrode system,and the effect of mass ratio of Fe3O4 and graphene on electrochemical performance was studied. Study results indicated that when the quality of FeCl3·4H2O and FeCl2·4H2O were 0. 456 g and 0. 665 g,respectively,and the quality of graphene oxide was 150 mg,the electrochemical property of composite materials is the best,and its specific capacitance was up to 510 F/g.
出处 《应用化工》 CAS CSCD 北大核心 2016年第12期2263-2265,2268,共4页 Applied Chemical Industry
基金 国家自然基金项目(21503122) 山西大同大学校青年科学基金(2013Q10)
关键词 超级电容器 FE3O4 石墨烯 纳米复合材料 共沉淀法 supercapacitor Fe3O4 graphene nanocomposites co-precipitation method
  • 相关文献

参考文献1

二级参考文献26

  • 1Bolotin KI,Sikes KJ,Jiang Z,et al.Ultrahigh Electron Mobili-ty in Suspended Graphene[J].Solid State Common,2008,146(9-10):351-355.
  • 2Bolotin K I,Sikes K J,Hone J,et al.Temperature-Dependent Transport in Suspended Graphene[J].Phys Rea Lett,2008,101(9):4-7.
  • 3Du X,Skachko I,Barker A,et al.Approaching Ballistic Trans-port in Suspended Graphene[J].Nat Nanotechnol,2008,3(8):491-495.
  • 4Kelly B.Physics of Graphite[M].London:Applied Science Publishers,1981.
  • 5Schedin F,Geim A K,Morozov S V,et al.Detection of Indi-vidual Gas Molecules Adsorbed on Graphene[J].Nat Mater,2007,6(9):652-625.
  • 6Blake P,Brimicombe P D,Nair R R,et al.Graphene-Based Liquid Crystal Device[J].Nano Lett,20088(6):1704-1208.
  • 7Wang X,Zhi L J,Mullen K.Transparent,Conductive Gra-phene Electrodes for Dye-Sensitized Solar Cells[J].Nano Lett,2008,8(1):323-327.
  • 8Nair R R,Blake P,Grigorenko A N,et al.Fine Structure Con-slant Defines Visual Transparency of Graphene[J].Science,2008,320(5881):1308-1313.
  • 9Li D,Muller M B,Gilje S,et al.Processable Aqueous Disper-sions of Graphene Nanosheets[J].Nat Nanotechnol,2008,3(2):101-105.
  • 10Eda G,Fanchini G,Chhowalla M.large-Area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material[J].Nat Nanotechnd,2008,3(5):270-274.

共引文献23

同被引文献9

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部