期刊文献+

分布协作式对等网络中大规模空间数据挖掘方法研究 被引量:1

Distributed Collaborative Peer-to-Peer Network Massive Spatial Data Mining Method in the Study
下载PDF
导出
摘要 分布协作式对等网络较为复杂,而空间数据规模大,当前数据挖掘方法很难实现对其的准确挖掘。为此,提出一种新的分布协作式对等网络中大规模空间数据挖掘方法,给出分布协作式对等网络的GIS应用架构,在此基础上对分布协作式对等网络进行无向环路遍历,获取分布协作式网络的全部环路,挖掘出目的空间数据所属社区。通过痕迹系数判断目的空间数据流是否经过该社区,如果目标空间数据流经过该社区,则通过计算相关系数获取某个时刻目标空间数据流在社区中的位置,从而实现大规模空间数据挖掘。实验结果表明,采用所提方法对分布协作式对等网络中大规模空间数据进行挖掘,有很高的挖掘有效性,而且挖掘效率和挖掘精度均较高。 The distributed collaborative peer-to-peer network is relatively complex, and large scale spatial data, the data mining method is difficult to realize the accurate mining. For this, a new kind of distributed collaborative peer-to-peer network massive spatial data mining methods was put forward, give a distributed collaborative peer-to- peer network GIS application architecture, on the basis of the distributed collaborative peer-to-peer networks without the loop traverse,all access to distributed collaborative network loop, purposed of excavated space data belongs to the community, through the coefficient of trace whether objective space data flow through the community. If the target space data flow through the community, by computing the correlation coefficient for some point target space is the position of the data flow in the community, so as to realize the large-scale space data mining. The experimental results show that the proposed method for distributed collaborative peer-to-peer network massive spatial data mining, a high degree of effectiveness, efficiency and accuracy of mining and mining are higher.
作者 陈滢生
出处 《科学技术与工程》 北大核心 2017年第11期272-276,共5页 Science Technology and Engineering
关键词 分布协作式 对等网络 大规模 空间数据 挖掘 distributed collaborative peer-to-peer network on a large scale spatial data mining
  • 相关文献

参考文献5

二级参考文献38

  • 1庄力可,寇忠宝,张长水.网络日志挖掘中基于时间间隔的会话切分[J].清华大学学报(自然科学版),2005,45(1):115-118. 被引量:24
  • 2陶剑文.一种分布式Web日志挖掘系统的设计与实现[J].计算机仿真,2006,23(10):109-112. 被引量:26
  • 3常卫东,王正华,鄢喜爱.基于集成神经网络入侵检测系统的研究与实现[J].计算机仿真,2007,24(3):134-137. 被引量:29
  • 4Wang Lizhen, Zhou Lihua, Chen Hongrnei, et al. The princi- ple and applications of data warehouse and data mining[M]. 2nd ed. Beijing: Science Press, 2009.
  • 5Huang Yan, Shekhar S, Xiong Hui. Discovering colocation patterns from spatial data sets: a general approach[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16 (12): 1472-1485.
  • 6Huang Yan, Zhang Pusheng. On the relationships between clustering and spatial co-location pattem mining[C]//Proceedings of the 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI '06), Arlington, USA, Nov 2006. Washington, DC, USA: IEEE Computer Society, 2006: 513-522.
  • 7Xiong Hui, Shekhar S, Huang Yan, et al. A framework for discovering co-location patterns in data sets with extended spatial objects[C]//Proceedings of the 12th Annual ACM International Conference on Data Mining (SDM '04), Lake Buena Vista, USA, Apr 2004. New York, NY, USA: ACM, 2004: 1-12.
  • 8Yoo J S, Shekhar S, Smith J, et al. A partial join approach for mining co-location patterns[C]//Proceedings of the 12th Annual ACM International Workshop on Geographic Infor- mation Systems (GIS '04), Washington, USA, 2004. New York, NY, USA: ACM, 2004: 241-249.
  • 9Yoo J S, Shekhar S, Celik M. A join-less approach for co- location pattern mining: a summary of results[C]//Proceedings of the 5th IEEE International Conference on Data Mining(ICDM '05), Houston, USA, 2005. Washington, DC, USA: IEEE Computer Society, 2005: 813-816.
  • 10Wang Lizhen, Bao Yuzhen, Lu J, et al. A new join-less approach for co-location pattern mining[C]//Proceedings of the 8th IEEE International Conference on Computer and Information Technology (CIT '08), Sydney, Australia, 2008. Piscataway, NJ, USA: IEEE, 2008: 197-202.

共引文献54

同被引文献17

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部