摘要
为了解决对半无穷区间上具有可数个脉冲点且带有积分边界条件的分数阶脉冲微分方程边值问题,具体研究此类微分方程边值问题解的存在性。通过定义合适的Banach空间、范数以及算子,合理运用分数阶微积分的性质,分别应用压缩映像原理和Krasnoselskii不动点定理证明了分数阶脉冲微分方程边值问题解的存在性,最后通过实例验证了此类方程边值问题解的存在性。
In order to solve the boundary value problem of fractional impulsive differential equations with countable impulses and integral boundary conditions on the half line, the existence of solutions to the boundary problem is specifically studied. By defining suitable Banach spaces, norms and operators, using the properties of fractional calculus and applying the contraction mapping principle and Krasnoselskii's fixed point theorem, the existence of solutions for the boundary value problem of fractional impulsive differential equations with countable impulses and integral boundary conditions on the half line is proved, and examples are given to illustrate the existence of solutions to this kind of equation boundary value problems.
出处
《河北科技大学学报》
CAS
2016年第6期562-574,共13页
Journal of Hebei University of Science and Technology
基金
河北省自然科学基金(A2013208108)