期刊文献+

分数阶脉冲微分方程边值问题解的存在性 被引量:2

Existence of solutions to boundary value problem of fractional differential equations with impulsive
下载PDF
导出
摘要 为了解决对半无穷区间上具有可数个脉冲点且带有积分边界条件的分数阶脉冲微分方程边值问题,具体研究此类微分方程边值问题解的存在性。通过定义合适的Banach空间、范数以及算子,合理运用分数阶微积分的性质,分别应用压缩映像原理和Krasnoselskii不动点定理证明了分数阶脉冲微分方程边值问题解的存在性,最后通过实例验证了此类方程边值问题解的存在性。 In order to solve the boundary value problem of fractional impulsive differential equations with countable impulses and integral boundary conditions on the half line, the existence of solutions to the boundary problem is specifically studied. By defining suitable Banach spaces, norms and operators, using the properties of fractional calculus and applying the contraction mapping principle and Krasnoselskii's fixed point theorem, the existence of solutions for the boundary value problem of fractional impulsive differential equations with countable impulses and integral boundary conditions on the half line is proved, and examples are given to illustrate the existence of solutions to this kind of equation boundary value problems.
出处 《河北科技大学学报》 CAS 2016年第6期562-574,共13页 Journal of Hebei University of Science and Technology
基金 河北省自然科学基金(A2013208108)
关键词 常微分方程解析理论 脉冲 压缩映像原理 KRASNOSELSKII不动点定理 边值问题 半无穷区间 analytic theory of ordinary differential equation impulse contraction mapping theorem Krasnoselskii’ s fixed point theorem boundary value problem the half line
  • 相关文献

参考文献6

二级参考文献75

共引文献32

同被引文献3

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部