期刊文献+

基于改进K-近邻算法的电视剧点播量预测方法 被引量:1

A PREDICTION METHOD OF TV ON DEMAND BASED ON IMPROVED KNN ALGORITHM
下载PDF
导出
摘要 及时、准确地预测电视剧点播量为商业决策提供很大帮助。传统时间序列预测需要大量历史数据,很难满足及时、准确的预测需求。提出一种基于改进K-近邻算法的电视剧点播量预测方法,改进了K-近邻模型,并融入缩放技术和相关系数,结合百度搜索数据和点播量序列的相关性,以前一周每天的点播量为特征,预测电视剧后一天的点播量。在PPTV和优酷数据集上进行实验,比用K-近邻的方法在MAE和MAPE上分别提高了75.5%、95.3%和71.8%、99.3%。 Timely and accurate prediction of TV on demand provides a great help for commercial decision. Traditional time series prediction requires a lot of historical data,and it is difficult to meet the timely and accurate prediction needs.In this paper,an improved KNN algorithm is proposed to improve the prediction of TV on demand. The KNN model is improved,and the scaling technology and correlation index are integrated. Combining the correlation between Baidu search data and the demand quantity sequence,it is characterized by daily demand of the previous week to predict the day after the TV drama demand. Experiments on the PPTV and Youku data sets show an increase of 75. 5%,95. 3%,71. 8% and 99. 3% on the MAE and MAPE,respectively,compared with the KNN algorithm.
作者 潘栋 杨静
出处 《计算机应用与软件》 2017年第5期241-246,共6页 Computer Applications and Software
基金 国家科技支撑项目(2015BAH01F02) 上海市科学技术委员会科研计划项目(16511102702)
关键词 点播系统 电视剧点播量预测 K-近邻模型 搜索数据 缩放技术 相关系数 On-demand system TV on demand prediction KNN model Search data Scaling technology Corre-lation index
  • 相关文献

参考文献1

二级参考文献11

  • 1刘珊.购剧有道:电视剧交易中的买方角色[EB/OL].(2013-11-14).http://www.meijiezazhi.com/zt/nr/2013-11-14/13144.html.
  • 2Abrahamsson H, Nordmark M. Program Popularity and Viewer Behavior in a Large TV-on-demand System[C//Proceedings of 2012 ACM Conference on Internet Measurement. New York, USA: ACM Press, 2012 : 199-210.
  • 3Qiu T,Ge Z, Lee S, et al. Modeling Channel Popularity Dynamics in a Large IPTV System [ C ]//Proceedings of the l lth International Joint Conference on Measurement and Modeling of Computer Systems. New York, USA: ACM Press,2009:275-286.
  • 4Morris M R, Teevan J, Panovich K. What Do People Ask Their Social Networks, and Why'?. A Survey Study of Status Message Q & A Behavior [ C ]//Proceedings of SIGCHI Conference on Human Factors in Computing Systems. New York, USA :ACM Press ,2010 : 1739-1748.
  • 5Panaligan R. Quantifying Movie Magic with Google Search[ EB/OL ]. ( 2013-05-18 ). http ://www. tuicool. com/articles/mei2Qf.
  • 6Asur S, Huberman B A. Predicting the Future with Social Media, HPL-2010-53 [ R ]. Hewlett Packard Company ,2010.
  • 7Sadikov E, Parameswaran A G, Venetis P. Blogs as Predictors of Movie Success [ C ]//Proceedings of the 3rd International Conference on Weblogs and Social Media. New York, USA : ACM Press, 2009 : 304-308.
  • 8Mishne G, Glance N. Predicting Movie Sales From Blogger Sentiment [ C ]//Proceedings of 2006 Spring Symposium on Computational Approaches to Analyzing Weblogs. Menlo Park, USA: AAAI Press, 2006: 301-304.
  • 9Jansen B J,Zhang Mimi ,Sobel K. Twitter Power:Tweets as Electronic Word of Mouth [ J ]. Journal of the American Society for Information Science and Technology, 2009, 60( 11 ) :2169-2188.
  • 10Nielsen. Nielsen Twitter TV Ratings [ EB/OL]. (2013- 10-07). http://www, nielsen, com/us/en/press-room/ 2013/nielsen-launches-nielsen-twitter-tv-ratings. html.

共引文献8

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部