摘要
对Camassa-Holm方程的初边值问题建立了一种三层的守恒有限差分格式,验证了该差分方程解的能量守恒性,对差分解进行了模估计.并用离散能量方法证明了该差分方程的解在L∞范数下是无条件收敛且稳定的,最后说明三层差分格式比两层差分格式更容易求解.
A three-level conservative finite difference scheme is established for Camassa-Holm equation with dirichlet boundary value condition in this paper,the energy conservation of the solutionofthedifferenceequation isproved,thesolutionofthescheme isestimated. It is proved that the difference scheme is unconditionally stable and convergent in the L ∞ norm. Finally ,t is shown that the three-level difference scheme is easier to solve than di fference scheme.
出处
《陕西科技大学学报》
CAS
2017年第3期186-190,共5页
Journal of Shaanxi University of Science & Technology
基金
国家自然科学基金项目(11371175)
陕西广播电视大学校级科研课题(15D-07-B02)