期刊文献+

基于HPM教学的学生认知发展个案研究 被引量:6

Case Study on Students’ Cognitive Development Based on HPM Instruction
下载PDF
导出
摘要 数学教学中融入数学史是一个重要的研究课题.在八年级数学教学中,进行数学史融入统计概念教学的实验研究,选取6名学生作为个案研究对象,对其认知发展进行定性分析,结果发现:参与研究的5名学生的认知水平得到明显提高,而有1名学生的认知依旧停留在原有的水平.研究表明,数学史融入统计教学加强了学生对统计概念的理解,促进了学生认知的发展,不过,并非所有学生的认知水平都得到明显提升,可能某些学生收效甚微. Integrating the history of mathematics in teaching and research explored case of six students in eighth grade of junior showed that five students' understanding of mean, median and learning of mathematics was always a central topic of HPM. The high school based on HPM instruction. The case of six students mode were notably strengthened, one of them moved an entire cognitive level, four students' cognitive levels were increased respectively by 1 and 3 levels, and another one did little growth. The research showed that it was an important cause to promote the students' cognitive ability which mathematics history integrated into teaching of statistics concepts.
作者 吴骏
出处 《数学教育学报》 CSSCI 北大核心 2017年第2期46-49,91,共5页 Journal of Mathematics Education
基金 全国教育科学规划教育部重点课题——边疆少数民族地区小学数学教学中融入数学文化的调查研究(DMA150217)
关键词 HPM 认知发展 个案研究 SOLO分类法 HPM cognitive development case research SOLO taxonomy
  • 相关文献

参考文献7

二级参考文献58

  • 1梁绍君.“算术平均数”概念的四个理解水平及测试结果[J].数学教育学报,2006,15(3):35-37. 被引量:13
  • 2陈琦 刘儒德.当代教育心理学[M].北京:北京师范大学出版社,1998.168.
  • 3李士锜.PME:数学教育心理学[M].上海:华东师范大学出版社,2001..
  • 4上海市教育委员会.上海市中小学数学课程标准(试行稿)[M].上海:上海教育出版社,2004.
  • 5洪万生.HPM随笔(一).HPM通讯,1998,(1).
  • 6Cai J. Understanding and Representing the Arithmetic Averaging Algorithm: an Analysis and Comparison of US and Chinese Students' Responses [J]. International Journal of Mathematical Education in Science and Technology, 2000, 31(6): 839-855.
  • 7Strauss S, Bichler E. The Development of Children's Concepts of the Arithmetic Average [J]. Journal for Research in Mathematics Education, 1988, 19(1): 64-80.
  • 8Mokros J,Russell S J. Children's Concepts of Average and Representativeness [J]. Journal for Research in Mathematics Education, 1995, 26(1): 20-39.
  • 9Pirie S, Kieren T. Growth in Mathematics Understanding: How Can We Characterize It and How Can We Represent It? [J]. Educational Studies in Mathematics, 1994, 26(2-3): 165-190.
  • 10李士镝.ME:数学教育心理[M].上海:华东师范大学出版社,2001..

共引文献85

同被引文献124

引证文献6

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部