期刊文献+

基于POEM_SLPP的人脸识别算法 被引量:5

Face recognition algorithm based on POEM_SLPP
下载PDF
导出
摘要 针对方向边缘幅值模式(patterns of oriented edge magnitudes,POEM)提取的人脸特征维数过高和计算复杂度较大的问题,提出了结合方向边缘幅值模式和有监督的局部保持投影(patterns of oriented edge magnitudes_supervised locality preserving projections,POEM_SLPP)的人脸识别算法。首先,采用POEM算子进行特征提取;其次,将高维特征数据投影到SLPP算法求出的低维样本空间进行降维;最后,采用最近邻法对测试样本进行分类。在CAS-PEAL-R1人脸库上的实验结果表明,在表情、背景、饰物、时间、距离测试集上,该算法的平均识别率较POEM+LPP算法提高了22%,较POEM+PCA提高了2%。 Considering that facial feature extracted by the patterns of oriented edge magnitudes had the high dimensionality and complex computing, this paper proposed a face recognition algorithm based on the patterns of oriented edge magnitudes_ super- vised locality preserving projections(POEM_SLPP). This algorithm first extracted facial feature by POEM operator, and then got dimension reduction by projecting the high-dimensional feature data to the sample space obtained by SLPP algorithm. Finally, the proposed algorithm classified test samples by nearest neighbor method. Experimental results on CAS-PEAL-R1 face database (including the expression, background, accessory, age, distance test set) indicate that the average recognition rate of the new algorithm increases by 22% than the POEM + LPP algorithm, and increases by 2% than the POEM + PCA algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2017年第6期1896-1899,共4页 Application Research of Computers
基金 上海市电站自动化技术重点实验室资助项目(13DZ2273800)
关键词 人脸识别 方向边缘幅值模式 有监督的局部保持投影 face recognition patterns of oriented edge magnitudes ( POEM ) supervised locality preserving projections (SLPP)
  • 相关文献

参考文献2

二级参考文献23

  • 1罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 2郑宇杰,杨静宇,吴小俊,王卫东,张丽丽.一种新的核线性鉴别分析算法及其在人脸识别上的应用[J].计算机科学,2006,33(7):223-226. 被引量:3
  • 3Yang J, Zhang D, Yang J Y. Globally maximizing, locally minimizing: Unsupervised Discriminant Projection with applications to faee and palm biornetrics[J]. IEEE Tran. Pattern Analysis and Machine Intelligence, 2007,29 (4) : 650-664
  • 4Roweis S T , Saul L K. Nonlinear dimensionality reduction by Locally Linear Embedding[J]. Science, 2000, 290(5500) : 2323- 2326
  • 5Tenenbaum J B , Silva V D, Langford J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000,290(5500) :2319 -2323
  • 6Belkin M , Niyogi P. Laplacian Eigenmaps and spectral tech - niques for embedding and clustering [C]. Advances in Neural Information Processing Systems. Cambridge, MA, USA: The MIT Press, 2002,14 : 585-591
  • 7Okun O, Kouropteva O. Supervised locally linear embedding algorithm [C]//Proc. of the Tenth Finnish Artificial Intelligence Conference. Finland; FAIC, 2002:50- 61
  • 8Zhu X J. Semi supervised learning literature survey [R]. University of Wisconsin-Madison. Tech Rep:1530. December 2007
  • 9YangX, Fu H Y, Zha H Y. Semi - supervised nonlinear dimensionality reduction[C] ffProc, of the 23rd International Conference on Machine Learning. Pittsburgh, Pennsylvania, 2006, 148:1065-1072
  • 10Belkin M, Niyogi P, Sindhwaniyd V. Manifold regularization: A geometric framework for learning from examples[J].Journal of Machine Learning Research, 2006,7 (11) : 2399-2434

共引文献79

同被引文献39

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部